Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
The thermoelectric properties of a set of single crystalline Si wafers with different oxygen concentration grown by the Czochralski technique have been studied at ultrahigh pressures up to 25 GPa. The dependence of semiconductor-metal transition pressure at Czochralski grown Si on the concentration c_{O} of the interstitial oxygen was found to present a convex curve with the maximum near c_{O} ≈ 9 × 10^{17} cm^{-3}. The high pressure thermoelectric power method seems to be suitable for characterization of impurity-defect structure of Si wafers. For Si_{1 - x}Ge_{x} crystals (1% < x < 3%) the strong changes of both the value and the sign of thermoelectric power have been observed at pressures much less than ones of Si-I → Si-II transition. From nanoindentation data the phase transition Si-I → Si-II, corresponding to semiconductor-metal electronic transformation has been detected at the loading up to ≈ 10 mN. These findings suggest a way for creation of integrated circuits, in which zones with different types of conductivity and hence different p-n, p-n-p etc. structures may be "written" by applied stress at nanoscale level, and the control on the value of the above stresses now is possible by the proposed nanoindentation technique.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.