Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 8

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
High-resolution photoinduced transient spectroscopy has been applied to investigating the effect of the 1 MeV neutron fluence on the electronic properties of radiation defects in Czochralski grown silicon in magnetic field. A new approach to the analysis of the photocurrent relaxation waveforms as a function of time and temperature has been presented. It is based on using a two-dimensional numerical procedure with implementation of the inverse Laplace transformation for creating images of the sharp spectral fringes depicting the temperature dependences of the thermal emission rate for detected defect centers. In the material irradiated with the fluence of 3×10^{14} cm^{-2}, the dominant traps with activation energies of 75 meV and 545 meV are tentatively identified with an aggregate of three Si interstitials and the trivacancy, respectively. In the material irradiated with the fluence by the order of magnitude higher, the activation energies of the main traps are found to be 115, 350, 505, 545, and 590 meV. These traps are tentatively attributed to an aggregate of four Si interstitials, as well as to vacancy related centers such as V_3 (2-/-), V_2O (-/0), V_3 (-/0) and V_4 (-/0), respectively.
EN
A model enabling the equilibrium conductivity and transient photoconductivity of semi-insulating 4H-SiC to be simulated has been demonstrated. Using this model, the simulations of both equilibrium conductivity and transient photoconductivity have been carried out. Both the simulation and experimental results have shown that the evolution of photoconductivity in time after switching on the band-to-band generation of electron-hole pairs is strongly affected by the properties of deep level defects. The results of transient photocurrent measurements confirm the simulations results indicating that the Z_{1/2} center is a very effective recombination center in semi-insulating 4H-SiC having detrimental effect on the transient photoconductivity.
EN
High-resolution Laplace-transform deep level transient spectroscopy tech­nique has been used to study a fine structure in the carrier emission process for transition metal- and thermal donors-related defects in silicon. For the case of the transition metal centres the method revealed the fine structure when the defect has a similar emission characteristics to other defects in the crystal. The method also demonstrated the complex emission process for the thermal donors.
EN
The numerical analysis and experimental data on time-resolved four-wave mixing confirmed a novel origin of oscillations in subnanosecond carrier dynamics in highly excited InP:Fe crystals. The effect was attributed to simultaneous presence of electron and hole gratings, which drift in the space charge field and contribute constructively or destructively to refractive index modulation in time domain.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.