Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We present a time-resolved study of the light emission of a CdTe-based microcavity. In the nonlinear regime, under high excitation conditions, in the strong coupling regime, we observe pronounced beats of the intensity of the photoluminescence arising from the bottleneck region of the exciton-polariton band. These beats are very sensitive to the excitation density and vanish under weak pumping conditions. We attribute the beats to a new nonlinear coupling mechanism of optically active and dark crystal states, related to polariton-polariton scattering, which leads to mixing between bright and dark states.
EN
We studied the dependence of polariton emission dynamics on polariton wave-vector and exciton-photon energy detuning. To reproduce the experimental data, we applied a model that obtains the photonic and the excitonic emission rates of the polariton.
3
Content available remote

Cavity-Polariton Effects in II-VI Microcavities

86%
EN
Semiconductor microcavities are monolithic multilayer heterostructures grown by molecular beam epitaxy. They allow the confinement along the growth axis of both photons between the Bragg reflectors and excitons in quantum wells. If the exciton-photon coupling matrix element is large enough compared to the line width, the system is said to be in the strong coupling regime. In that case a quantum well exciton couples to another discrete state: the photon mode of a planar microcavity with the same in-plane wave vector, to give rise to quasi-stationary states named cavity polaritons. In this regime, the Fermi golden rule does not hold any more and the optical properties, linear or nonlinear, are strongly related to polariton features. A review of the optical properties of CdTe-based microcavities operating in the strong coupling regime is given in this paper. The strength of the exciton-photon coupling, dynamic optical properties, and relaxation processes along polariton dispersion curves will be discussed, as well as stimulated emission of cavity polariton luminescence.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.