Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 18

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
Among the copper base shape memory alloys the most popular are CuZnAl alloys which however show several features like: tendency to stabilisation, limitation of the effect to low temperatures, lattice defects multiplication after numerous cycling and low decomposition temperatures. This defines the directions of investigations of copper base alloys in order to avoid these negative features limiting their applications. In spite of a large number of investigations of several types of alloys like CuAlNi, CuAlMn, CuAlNiMnTi, CuAlAg, CuGa, CuZn and others, the shape memory properties of NiTi base alloys are considered to be superior and actually are used in a majority of applications in spite of a much higher components cost. In this presentation the investigations of superelastic deformation of mono- and polycrystalline CuAlMn alloys will be discussed. Structure changes during pseudoelastic deformation of CuAlMn single crystals were investigated using in situ optical and high voltage electron microscopy. The effects of ageing on the martensitic transformation temperatures in CuZnAl, CuAlMn and CuZnSn alloys and resulting shift of transformation temperatures are discussed based on the transmission electron microscopy studies. They indicate that changes of ordering within β phase are responsible for an increase, while precipitation of bainite or γ phase for a decrease in the martensitic transformation temperatures. Ribbons from CuAlNiMn alloy cast using the melt spinning method, crystallizing at a very high rate, show a large drop of M_{s} temperatures. This drop of M_{s} depends upon a wheel speed controlling the solidification rate. It is correlated with the decreasing grain size and its value is much larger for ribbons containing titanium due to its grain refinement capabilities. The two-way shape memory effect may appear after the training performed by a repetitive cooling under external stress and heating after unloading. It is demonstrated that in alloys transforming below 150°C saturation of the two-way shape memory effect occurs between 50 and 80 training cycles.
EN
Two magnesium based alloys containing 4.5 wt% Li and 1.5 wt% Al (alloy 1) and 9 wt% Li and 1.5 wt% Al (alloy 2) were cast under argon atmosphere and hot extruded at 350°C. Microstructure of alloy 1 consisted of hexagonal α phase of average grain size 20 μm and small aluminum rich precipitates being the most probably AlLi₂Mg phase. Alloy 2 in the extruded form consisted of lamellas of α+ β phases of thickness 5-20 μm and length above 100 μm. Significant grain refinement down to about 2 μ m was observed in one-phase hexagonal (hcp) alloy 1 after one pass of ECAP processing with helical component. Two-phase (hcp + bcc) alloy 2 showed higher non-homogeneity after the first equal channel angular pressing pass due to easier deformation of softer bcc phase, while both, α and β phases exhibited low angle grain boundaries. The hardness and the yield strength of the alloys were higher for alloy 1 (68 HV and 205 MPa, respectively) than those of alloy 2 (61 HV and 175 MPa). Subsequent equal channel angular pressing passes were performed at lower extrusion stress. The hardness of both alloys did not change significantly after subsequent equal channel angular pressing passes and revealed tendency to decrease. Two-phase alloy showed superplastic properties already after one equal channel angular pressing pass at 160°C with grain growth after superplastic tensile testing. Single phase hcp alloy did not show such properties after 1 pass, but after a few equal channel angular pressing passes it could be superplastically formed.
EN
The Al_{65}Cu_{20}Fe_{15} alloy has been prepared by conventional casting to the mould and by melt spinning or atomisation techniques. The melt spun ribbon was in the form of fragmented, brittle flakes, atomized powder has spherical shape with average size 17.2 μm. It was found that icosahedral I-phase was the main phase in all types of prepared samples. In the conventionally cast alloy the following phases have been identified additionally: λ-Al_{13}Fe_4, τ-AlCu(Fe) and η_2-AlCu. In the melt-spun ribbon the formation of η_2 is avoided, while in the atomised powder the I-phase coexists with small amount of copper rich τ-phase. In the cast ingot the I-phase form as a product of peritectic reaction λ + L, while in the ribbon and in the powder quasicrystal solidified from the undercooled melt as primary phase and next metastable cubic τ-AlCu(Fe) was formed at the interdendritic areas. Single I-phase grains of the sizes about 1 μm are observed in the ribbon close to the wheel side.
EN
The mechanical properties and substructure formation of high purity aluminium (99.999%) processed by severe plastic deformation method (equal channel angular pressing) were studied. The equal channel angular pressing process was carried out at room temperature by route C (sample rotation around the axis about 180° after each pass) in a die with two channels intersecting at an angle of Φp = 90. The softening mechanism through dynamic recovery was recognized up to 6th equal channel angular pressing pass, however, after that the mechanical strengthening was revealed. The samples after equal channel angular pressing processing were annealed in different temperature and time conditions. The influence of annealing temperature and time on microhardness as well as diameter of grain size were investigated in samples processed by the 4th equal channel angular pressing pass.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.