Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 3

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
100%
EN
The method of metal-assisted chemical etching produces a porous silicon layer. Palladium particles are deposited on both: multi-crystalline and Czochralski grown mono-crystalline Si wafers by immersing them in PdCl_{2} solution for 1 to 3 min. X-ray photoelectron spectroscopy analysis of Pd clusters shows a decrease in Pd metal fraction by prolonged immersion time t from F_{Pd} = 71.2% for t = 1 min to F_{Pd} = 61.4% for t = 3 min due to Pd oxidation process. Porous silicon forms by metal-assisted chemical etching in a HF:H_{2}O_{2} solution for 1 to 3 min. Photoluminescence of metal-assisted chemical etched samples exhibits the peak with a maximum of t at λ=650 nm independent of the etching time. Simultaneously, the intensity of the photoluminescence spectra strongly decreases for extended etching time t = 3 min. This behavior is attributed to increasing layer macroporosity, which strongly reduces amount of light emitting nanocrystallites.
EN
The paper presents results of the studies concerning aluminum-graphene composites produced with use of step technique; first mechanical alloying of Al and graphene powders and later intensive deformation by the high pressure torsion. As a result small, thin and round samples of composites, about 10 mm in diameter were achieved. For comparison similar samples not containing graphene were investigated. The X-ray diffraction, transmission electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy were applied to study composites structures and analyze graphene content and atomic bonds. The Raman spectroscopy method suggested multilayer graphene, which could also be identified as the defected nano-graphite as a component of the composite structure as well as some small content of the aluminum carbides. The highly dispersed microstructures of aluminum matrices were identified with the transmission electron microscopy, showing difference between the samples produced with the increased number of rotations, leading to the increased deformation realized. This method revealed carbon and aluminum oxides in large amounts which is interpreted as a surface effect. This method suggested also formation of the carbon-metal and carbon-metal- oxygen atomic bonds, which might partially result from formation of the carbides.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.