Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
In this work we present measurements of GaInN/GaN light emitting diodes (LEDs) with an active layer consisting of three quantum wells made of Ga_{0.9}In_{0.10}N that have different widths (1.8 nm, 2.7 nm, 3.7 nm). A comparison of emission and absorption (photocurrent) on the same sample revealed a shift in energy, with the emission energy being significantly lower. The shifts are about 0.02 eV, 0.03 eV, and 0.04 eV for the quantum wells having the widths of 1.8 nm, 2.7 nm, and 3.7 nm, respectively. This can be explained by a shift of the ground state energy caused by the quantum confined Stark effect. Calculations show that due to the spontaneous polarization and the piezoelectric effect a strong electric field of the order of 1 MV/cm was present in the GaInN quantum wells. Simulations of ground-state energies in the model of an infinite square well under the influence of an electric field with a matched effective well width were performed and used to interpret the experimental results.
EN
The lifetime and stability of AlGaN/GaN heterostructure field effect transistors at high power levels can be enhanced by introducing field plates to reduce electric field peaks in the gate-drain region. Simulations of the electric field distribution along the channel using the 2D ATLAS software from Silvaco indicate that above a characteristic drain source voltage three spatially separated electric field peaks appear, one located at the drain-side edge of the gate foot, one at the end of the drain-sided gate field plate, and one at the end of the source shield field plate. The close correlation between lateral electric field and the electroluminescence due to hot electron related intra-band transitions can be very helpful when optimizing the electric field distribution in high power devices. Electroluminescence microscopy images of devices with gate and source shield field plate reveal the peaks located at the locations of enhanced electric field. By studying the voltage dependence of the electroluminescence peaks the influence of the field plates on the electric field distribution in source drain direction can be visualized.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.