Hydrothermal synthesis of hydroxyapatite (HA) is a method which is relatively easy to apply and enables HA precipitation on substrates of various shapes, which is vital to endoprostheses fabrication. Anodic oxidation facilitates HA precipitation, making the coating thicker and more uniform. In this paper the influence of anodic oxidation of titanium substrates on HA precipitation in hydrothermal synthesis is discussed. To determine chemical composition and coating uniformity of anodised and polished Ti substrates the Raman microspectroscopy was employed. The composition was also confirmed using X-ray diffraction method. HA coatings on Ti after anodic oxidation exhibit higher uniformity in comparison to untreated Ti. The X-ray diffraction patterns showed that the HA coating was partly amorphous. Also influence of additional treatment (soaking in NaOH and/or HBSS) after anodic oxidation is discussed in the present paper. It seems that pretreatment may be favourable in some cases, but if the anodic oxidation was conducted in the presence of calcium phosphates the pretreatment seems to prevent the HA precipitation.
In this work, the electrophoretic deposition method has been developed for the fabrication of bioactive alginate coatings on the surface of Ti15Mo implant alloy. Thin ZnO film was deposited cataphoretically as the interlayer prior to anaphoretic deposition of alginate (Alg) which was performed from aqueous solution containing 1 g dm^{- 3} of NaAlg at room temperature. The deposition voltage and time varied in the range 20-50 V and 30-120 min, respectively. The microstructure of Alg coatings was studied by scanning electron microscope, and the surface roughness was analysed using atomic force microscopy. Structure was studied by grazing incidence X-ray diffraction. Chemical composition and functional group were examined using energy dispersive spectrometry and attenuated total reflectance Fourier transform infrared spectroscopy methods, respectively. It was found that controlling the deposition conditions it is possible to obtain amorphous Alg coatings of variable thickness and porosity. Mechanism of electrophoretic deposition of bioactive Alg coatings on the Ti15Mo alloy surface was discussed.
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.