Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 1

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
EN
We have studied the dislocation generation and propagation from the seed crystals during seed cast Si growth. The grown ingot was cut into a vertical wafer, followed by the dislocation imaging using X-ray topography and Secco etching. The dislocation behavior at the seed area was compared with the dislocation generation at the top surface due to the thermal stress during cooling. The dislocations at the seed/crystal interface have propagated on the {111} plane toward top. When the seed surface was not melted sufficiently, the interface defect density became high, but no clear dislocation propagation was recognized. This suggests that the thermal shock at the seed/melt interface was not high enough to propagate dislocations to the growth direction. A certain amount of dislocations has been introduced from the top into the ingot according to the thermal stress. These observations suggest that optimizing the initial growth condition is important to dislocation control.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.