Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl
Preferences help
enabled [disable] Abstract
Number of results

Results found: 2

Number of results on page
first rewind previous Page / 1 next fast forward last

Search results

help Sort By:

help Limit search:
first rewind previous Page / 1 next fast forward last
1
Content available remote

Methanol Vapor Sensing by Porous Silicon

100%
EN
In this study, methanol vapor sensing of porous silicon was investigated. The porous silicon samples were anodized in HF based solution and rinsed with ethanol or deionized water after the anodisation. Porous silicon surface is very sensitive for methanol vapor sensing and the sensitivity affect from the rinsing procedure of porous silicon. The experimental results show that porous silicon is a promising candidate material for sensing methanol vapor.
EN
In this study, tungsten-vanadium carbide-graphite and tungsten-vanadium carbide-titanium carbide-graphite composites (W-VC-TiC-C) which can be used in high-tech equipment were investigated against different gamma radioisotopes. The composite materials were produced via mechanical alloying method in two groups; one of them includes 93% tungsten (W), 6% vanadium carbide (VC) and 1% graphite (C) which was synthesized during three different alloying times (6, 12, 24 hours). Other group of the samples were composited as 91% tungsten, 6% vanadium carbide (VC), 2% titanium carbide (TiC) and 1% graphite (C) which has also three different alloying times (6, 12, 24 hours). Gamma transmission technique was used in the experiments to investigate the gamma attenuation properties of the composite materials. Linear and mass attenuation coefficients of the samples were determined in the experiments and theoretical mass attenuation coefficients were calculated using widely acknowledged XCOM computer code. The experimental mass attenuation coefficients and calculated theoretical results were compared and evaluated with each other. Results showed that gamma attenuation coefficients of the composite materials dependent on alloying time. It can be concluded that increasing the tungsten ratio causes higher linear attenuation coefficient which decreases with increasing gamma energies.
first rewind previous Page / 1 next fast forward last
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.