Preferences help
enabled [disable] Abstract
Number of results
2013 | 67 | 6 | 400–409
Article title

Pochodzenie i zróżnicowanie genetyczne ludzkiego wirusa niedoboru odporności typu 1

Title variants
The origin and genetic diversity of human immunodeficiency virus type 1
Languages of publication
Multiple transmission of simian immunodeficiency virus (SIV) into the human population started the pandemic of human immunodeficiency virus (HIV-1). The extraordinary variability of human immunodeficiency virus HIV-1 resulting from the high rate of genome mutations and the recombination between different strains resulted in the emergence of a genetically diverse viral strains. Genetic differences between HIV-1 isolates are now the basis for the classification of the virus. Tracking the spread of the HIV-1 genetic variants allows for the monitoring of the development of the epidemic, and provides important information about the time and possible routes of virus introduction into different countries, geographical regions or populations with different transmission routes of infection. On the other hand, the vast viral genetic diversity complicates the diagnosis of infection, can affect the susceptibility of HIV-1 to drugs and is a major obstacle in research aimed at creating an effective vaccine. In this paper the current knowledge on the origin of virus, the genetic diversity of HIV-1, as well as its impact on the course of infection and development of the epidemic is presented.
Pandemia ludzkiego wirusa niedoboru odporności (human immunodeficiency virus – HIV) została zapoczątkowana przez wielokrotną transmisję małpiego wirusa upośledzenia odporności (simian immunodeficiency virus – SIV) do populacji ludzkiej. Niezwykła zmienność HIV-1 wynikająca z dużej częstości mutacji pojawiających się w genomie oraz możliwości rekombinacji między materiałem genetycznym różnych szczepów wirusa zaowocowała wykształceniem zróżnicowanych pod względem genetycznym wariantów. Genetyczne różnice między izolatami HIV-1 stanowią obecnie podstawę klasyfikacji wirusa, a śledzenie rozprzestrzeniania poszczególnych wariantów pozwala na monitorowanie rozwoju epidemii i dostarcza ważnych informacji na temat czasu i sposobu transmisji wirusa do różnych krajów, regionów geograficznych lub populacji. Z drugiej strony olbrzymia różnorodność form genetycznych wirusa utrudnia diagnostykę infekcji, może wpływać na wrażliwość HIV-1 na leki i stanowi poważną przeszkodę w badaniach zmierzających do stworzenia skutecznej szczepionki. W niniejszej pracy przedstawiono aktualny stan wiedzy na temat pochodzenia wirusa, genetycznego zróżnicowania HIV-1 i wpływu tego czynnika na przebieg zakażenia i rozwój epidemii.

Physical description
  • Katedra i Zakład Mikrobiologii i Wirusologii Wydziału Farmaceutycznego z Oddziałem Medycyny Laboratoryjnej Śląskiego Uniwersytetu Medycznego w Katowicach ul. Jagiellońska 4 41-200 Sosnowiec tel. +4832 364 16 21, e-mail:
  • Katedra i Zakład Mikrobiologii i Wirusologii Wydziału Farmaceutycznego z Oddziałem Medycyny Laboratoryjnej Śląskiego Uniwersytetu Medycznego w Katowicach
  • 1. Korber B., Gaschen B., Yusim K., Thakallapally R., Kesmir C., Detours V. Evolutionary and immunological implications of contemporary HIV-1 variation. Br. Med. Bull. 2001; 58: 19–42.
  • 2. Gao F., Chen Y., Levy D.N., Conway J.A., Kepler T.B., Hui H. Unselected mutations in the human immunodeficiency virus type 1 genome are mostly nonsynonymous and often deleterious. J. Virol. 2004; 78: 2426–2433.
  • 3. Goff S.P. Retroviridae: The Retroviruses and their replication. W: Knipe D.M., Howley P.M., red. Fields Virology. 5th ed. Wolters Kluwer, Lippincott Williams & Wilkins, Philadelphia, PA 2007: 1999–2069.
  • 4. Goździcka-Józefiak A. Wirusologia molekularna. Wydawnictwo Naukowe UAM, Poznań 2004.
  • 5. Telesnitsky A.W., Telesnitsky A. HIV-1 genetic recombination: experimental approaches and observations. AIDS Rev. 2002; 4: 195–212.
  • 6. Onafuwa-Nuga A., Telesnitsky A. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol. Mol. Biol. Rev. 2009; 73 : 451–480.
  • 7. Neher R.A., Leitner T. Recombination rate and selection strength in HIV intra-patient evolution. PLoS Comput. Biol. 2010; 6: e1000660.
  • 8. Jetzt A.E., Yu H., Klarmann G.J., Ron Y., Preston B.D., Dougherty J.P. High rate of recombination throughout the human immunodeficiency virus type 1 genome. J. Virol. 2000; 74: 1234–1240.
  • 9. Suryavanshi G.W., Dixit N.M. Emergence of recombinant forms of HIV: dynamics and scaling. PLoS Comput. Biol. 2007; 3: 2003–2018.
  • 10. Freed E.O., Martin M.A. HIVs and their replication. W: Knipe D.M., Howley P.M., red. Fields Virology. 5th ed. Wolters Kluwer, Lippincott Williams & Wilkins, Philadelphia, PA 2007: 2107–2185.
  • 11. Mansky L.M., Temin H.M. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J. Virol. 1995; 69: 5087–5094.
  • 12. Coffin J.M. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 1995; 267: 483–489.
  • 13. Perelson A.S., Neumann A.U., Markowitz M., Leonard J.M., Ho D.D. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996; 271: 1582–1586.
  • 14. Shankarappa R., Margolick J.B., Gange S.J. i wsp. Consistent viral evolutionary changes associated with the progression of human immunodefi-ciency virus type 1 infection. J. Virol. 1999; 73: 10489–10502.
  • 15. Kijak G.H., Janini L.M., Tovanabutra S. i wsp. Variable contexts and levels of hypermutation in HIV-1 proviral genomes recovered from primary peripheral blood mononuclear cells. Virology 2008; 376: 101–111.
  • 16. Lama J., Planelles V. Host factors infl uencing susceptibility to HIV infection and AIDS progression. Retrovirology 2007; 4: 52.
  • 17. Yu X.Y., Liu B., Luo K., Kong W., Mao P., Yu X.F. Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science 2003; 302: 1056–1060.
  • 18. Roques P., Robertson D.L., Souquie`re S. i wsp. Phylogenetic analysis of 49 newly derived HIV-1 group O strains: high viral diversity but no group M-like subtype structure. Virology 2002; 302: 259–273.
  • 19. Simon F., Mauclere P., Roques P. i wsp. Identification of a new human immunodeficiency virus type 1 distinct from group M and group O. Nat. Med. 1998; 4: 1032–1037.
  • 20. Plantier J.C., Leoz M., Dickerson J.E. i wsp. A new human immunodeficiency virus derived from gorillas. Nat. Med. 2009; 15: 871–872.
  • 21. Robertson D.L., Anderson J.P., Bradac J.A. i wsp. HIV-1 nomenclature proposal:a reference guide to HIV-1 classification in human retroviruses and AIDS: a compilation and analysis of nucleic and amino acid sequences. Los Alamos, NM: Los Alamos National Laboratory; 1999. HIV-1 nomenclature proposal; p. 492–505.
  • 22. Kandathil A.J., Ramalingam S., Kannangai R., Shoba D. Molecular epidemiology of HIV. Indian J. Med. Res. 2005; 121: 333–344.
  • 23. Korber B., Gaschen B., Yusim K., Thakallapally R., Kesmir C., Detours V. Evolutionary and immunological implications of contemporary HIV-1 variation. Br. Med. Bull. 2001; 58: 19–42.
  • 24. Triques K., Bourgeois A., Vidal N. i wsp. Near full-length genome sequencing of divergent African HIV type 1 subtype F viruses leads to identification of a new HIV type 1 subtype designated K. AIDS Res. Hum. Retroviruses 2000; 16: 139–151.
  • 25. Robertson D.L., Anderson J.P., Brada J.A. i wsp. HIV-1 nomenclature proposal. Science 2000; 288: 55–56.
  • 26. Pepin J. The origins of AIDS. Cambridge University Press, 2011; 6–103: 221–235.
  • 27. Locatelli S., Peeters M. Non-Human Primates, Retroviruses, and zoonotic infection risks in the human population. Nature Education Knowledge 2012; 3(10): 62.
  • 28. Corbet S., Müller-Trutwin M.C., Vermisse P. i wsp. Env sequences of simian immunodeficiency viruses from chimpanzees in Cameroon are strongly related to those in human immunodeficiency virus group N in the same geographic area. J. Virol. 2000; 74: 529–534.
  • 29. Korber B., Muldoon M., Theiler J. i wsp. Timing the ancestor of the HIV-1 pandemic strains. Science 2000; 288: 1789–1796.
  • 30. Van Heuverswyn F., Li Y., Neel C. i wsp. Human immunodeficiency viruses: SIV infection in wild gorillas. Nature 2006; 444: 164.
  • 31. Lemey P., Pybus O., Rambaut A. i wsp. The molecular population genetics of HIV-1 group O. Genetics 2004; 167: 1059–1068.
  • 32. Gao F., Bailes E., Robertson D.L. i wsp. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 1999; 397: 436–441.
  • 33. Sharp P.M., Hahn B.H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 2011; 1: a006841.
  • 34. Vallari A., Holzmayer V., Harris B. Confirmation of Putative HIV-1 Group P In Cameroon. J. Virol. 2011; 85(3): 1403–1407.
  • 35. UNAIDS and WHO Department of Economic and Social Affairs United Nations Secretariat. A history of the HIV/AIDS epidemic with emphasis on Africa. New York 2003.
  • 36. Hemelaar J., Gouws E., Ghys P.D., Osmanov S. Global trends in molec-ular epidemiology of HIV-1 during 2000–2007. AIDS 2011; 25: 679–689.
  • 37. Paraskevis D., Pybus O., Magiorkinis G. i wsp. Tracing the HIV-1 subtype B mobility in Europe: a phylogeographic approach. Retrovirology 2009; 6: 49.
  • 38. Stańczak G.P., Stańczak J.J., Firląg-Burkacka E. i wsp. Transmission of HIV-1 drug resistance among newly diagnosed patients in Poland. Prz. Epidemiol. 2007; 61: 29–34.
  • 39. Stańczak G.P., Stańczak J.J., Marczyńska M. Evolving Patterns of HIV-1 Transmitted Drug Resistance in Poland in the Years 2000–2008. J. Med. Virol. 2010; 82:1291–1294.
  • 40. Yang C., Li M., Newman R.D. i wsp. Genetic diversity of HIV-1 in western Kenya: subtype-specific differences in mother-to-child transmission. AIDS 2003; 17: 1667–1674.
  • 41. Renjifo B., Fawzi W., Mwakagile D. i wsp. Differences in perinatal transmission among human immunodeficiency virus type 1 genotypes. J. Hum. Virol. 2001; 4: 16–25.
  • 42. Renjifo B., Gilbert P., Chaplin B. i wsp. Preferential in-utero transmis-sion of HIV-1 subtype C as compared to HIV-1 subtype A or D. AIDS 2004; 18: 1629–1636.
  • 43. Hudgens M.G., Longini I.M. Jr., Vanichseni S. i wsp. Subtype-specific transmission probabilities for human immunodeficiency virus type 1 among injecting drug users in Bangkok, Thailand. Am. J. Epidemiol. 2002; 155: 159–168.
  • 44. Hu D.J., Vanichseni S., Mastro T.D. i wsp. Viral load differences in early infection with two HIV-1 subtypes. AIDS 2001; 15: 683–691.
  • 45. Sarr A.D., Eisen G., Gueye-Ndiaye A. i wsp. Viral dynamics of primary HIV-1 infection in Senegal, West Africa. J. Infect. Dis. 2005; 191: 1460–1467.
  • 46. Fischetti L., Opare-Sem O., Candotti D., Lee H., Allain J.P. Higher viral load may explain the dominance of CRF02_AG in the molecular epidemiology of HIV in Ghana. AIDS 2004; 18: 1208–1210.
  • 47. Kiwanuka N., Laeyendecker O., Quinn T.C. i wsp. HIV-1 subtypes and differences in heterosexual HIV transmission among HIV-discordant couples in Rakai, Uganda. AIDS 2009; 23: 2479–2484.
  • 48. Abraha A., Nankya I.L., Gibson R. i wsp. CCR5- and CXCR4-tropic subtype C HIV-1 isolates have lower pathogenic fitness as compared to the other dominant group M subtypes: implications for the epidemic. J. Virol. 2009; 83: 5592–5605.
  • 49. Iversen A.K., Learn G.H., Skinhøj P., Mullins J.I., McMichael A.J., Rambaut A. Preferential detection of HIV subtype C over subtype A in cervical cells from a dually infected woman. AIDS 2005; 19: 990–993.
  • 50. van Harmelen J., Wood R., Lambrick M. An association between HIV-1 subtypes and mode of transmission in Cape Town, South Africa. AIDS 1997; 11: 81–87.
  • 51. Walter B.L., Armitage A.E, Graham S.C. Functional characteristics of HIV-1 subtype C compatible with increased heterosexual transmissibility AIDS 2009; 23: 1047–1057.
  • 52. Rainwater S., DeVange S., Sagar M. i wsp. No evidence for rapid subtype C spread within an epidemic in which multiple subtypes and intersub-type recombinants circulate. AIDS Res. Hum. Retroviruses 2005; 21: 1060–1065.
  • 53. Rai M.A., Nerurkar V.R, Khoja S. Evidence for a "Founder Effect" among HIV-infected injection drug users (IDUs) in Pakistan. BMC Infect. Dis. 2010, 10: 7.
  • 54. Alaeus A., Lidman K., Bjorkman A., Giesecke J., Albert J. Similar rate of disease progression among individuals infected with HIV-1 genetic sub-types A–D. AIDS 1999; 13: 901–907.
  • 55. Galai N., Kalinkovich A., Burstein R., Vlahov D., Bentwich Z. African HIV-1 subtype C and rate of progression among Ethiopian immigrants in Israel. Lancet 1997; 349: 180–181.
  • 56. Laurent C., Bourgeois A., Faye M.A. i wsp. No difference in clinical progression between patients infected with the predominant human immuno-deficiency virus type 1 circulating recombinant form (CRF) 02_AG strain and patients not infected with CRF02_AG, in Western and West-Central Africa: a four-year prospective multicenter study. J. Infect. Dis. 2002; 186: 486–492.
  • 57. Kanki P.J., Hamel D.J., Sankale J.L. i wsp. Human immunodeficiency virus type 1 subtypes differ in disease progression. J. Infect. Dis. 1999; 179: 68–73.
  • 58. Kaleebu P., French N., Mahe C. i wsp. Effect of human immunodeficiency virus (HIV) type 1 envelope subtypes A and D on disease progression in a large cohort of HIV-1-positive persons in Uganda. J. Infect. Dis. 2002; 185: 1244–1250.
  • 59. Kiwanuka N., Laeyendecker O., Robb M. i wsp. Effect of human immunodeficiency virus type 1 (HIV-1) subtype on disease progression in persons from Rakai, Uganda, with incident HIV-1 infection. J. Infect. Dis. 2008; 197: 707–713.
  • 60. Shao E., Nyombi B., Sabuni J. The evolution of HIV-1 subtypes and disease progression among adults on anti-retroviral drugs in Northern Tanzania. Retrovirology 2012; 9(2): 366.
  • 61. Baeten J.M., Chohan B., Lavreys L. i wsp. HIV-1 subtype D infection is associated with faster disease progression than subtype A in spite of similar plasma HIV-1 loads. J. Infect. Dis. 2007; 195: 1177–1180.
  • 62. Easterbrook P.J., Smith M., Mullen J. i wsp. Impact of HIV-1 viral subtype on disease progression and response to antiretroviral therapy. J. Int. AIDS Soc. 2010; 13: 4.
  • 63. Kaleebu P., Nankya I.L., Yirrell D.L. i wsp. Relation between chemokine receptor use, disease stage, and HIV-1 subtypes A and D: results from a rural Ugandan cohort. J. Acquir. Immune Defic. Syndr. 2007; 45: 28–33.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.