Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2022 | 13 | 107-119

Article title

Wybrane właściwości regolitu i ich istotny wpływ na realizację misji eksploracyjnych


Title variants

Critical regolith properties and their important implications for space exploration missions

Languages of publication



Interaction with regolith is an essential and unpredictable factor in implementing space exploration missions, affecting their risks and costs. Those apply not only to scientific missions (such as Rosetta, InSight, European Large Logistic Lander, Artemis program missions, and Commercial Lunar Payload Services) but also those oriented towards industrial and large-scale utilization of celestial body resources for infrastructure development (ISRU, In-Situ Resource Utilization). The article presents a broad-view synthesis of selected issues related to the properties of regolith and their exemplary impact on space missions and projects in which Poland has participated in recent years.






Physical description


  • Astronika Sp. z o.o., ul. Bartycka 18, Warszawa
  • Astronika Sp. z o.o., ul. Bartycka 18, Warszawa
  • Astronika Sp. z o.o., ul. Bartycka 18, Warszawa
  • Grytech, Warszawa


  • Arvidson R.E. i in., 2010, Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater, Journal of Geophysical Research, Vol. 115, E00F03, doi: 10.1029/2010JE00363
  • Biele J. i in., 2015, The landing(s) of Philae and inferences about comet surface mechanical properties, Science, Vol 349, Issue 6247, doi: 10.1126/science.aaa9816
  • Brown H.M. i in., 2022, Resource potential of lunar permanently shadowed regions, Icarus, Vol. 377, doi: 10.1016/j.icarus.2021.114874
  • Cannon K.M, Britt D.T., 2020, A geologic model for lunar ice deposits at mining scales, Icarus, Vol. 347, doi: 10.1016/j.icarus.2020.113778
  • Colaprete A. i in., 2010, Detection of Water in the LCROSS Ejecta Plume, Science, Vol.330, Issue 6003, s. 463–468, doi: 10.1126/science.1186986
  • Golombek M. i in., 2017, Selection of the InSight Landing Site, Space Sci Rev, Vol. 211, s. 5–95, doi: 10.1007/s11214-016-0321-9
  • Hockman B. i in., 2017, Experimental Methods for Mobility and Surface Operations of Microgravity Robots. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds) 2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer, Cham. doi: 10.1007/978-3-319-50115-4_65
  • Kornuta D. i in., 2019, Commercial lunar propellant architecture: A collaborative study of lunar propellant production, REACH, Vol. 13, doi: 10.1016/j.reach.2019.100026
  • Lange C. i in., 2020, Micro- and nanolander on the surface of Ryugu – Commonalities, differences and lessons learned for future microgravity exploration, Planetary and Space Science, Vol. 194, doi: 10.1016/j.pss.2020.105094
  • Luchsinger K.M. i in., 2020, Water within a permanently shadowed lunar crater: Further LCROSS modeling and analysis, Icarus, Vol. 354, doi: 0.1016/j.icarus.2020.114089
  • Marshall J.P i in., 2018, Failures in sand in reduced gravity environments, Journal of the Mechanics and Physics of Solids, Vol. 113, doi: 10.1016/j.jmps.2018.01.005
  • Rybus T. i in., 2013, New Planar Air-Bearing Microgravity Simulator for Verification of Space Robotics Numerical Simulations and Control Algorithms, in Proc. of the 12th Symposium on advanced Space Technologies in Automation and Robotics (ASTRA), Noordwijk, The Netherlands, May 15–17, 2013.
  • Seweryn K. i in., 2011, Lunar regolith analogue (in Polish: Analog gruntu księżycowego). National patent application no. P397651.
  • Seweryn K. i in., 2013, The Experimental Results of the Functional Tests of the Mole Penetrator KRET in Different Regolith Analogues, in: Sąsiadek, J. (eds) Aerospace Robotics. GeoPlanet: Earth and Planetary Sciences. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-642-34020-8_13
  • Spohn T. i in., 2015, Thermal and mechanical properties of the near-surface layers of comet 67P/Churyumov-Gerasimenko, Science, Vol 349, Issue 6247, doi: 10.1126/science.aab0464
  • Spohn T. i in., 2022, The InSight-HP3 mole on Mars: Lessons learned from attempts to penetrate to depth in the Martian soil, Advances in Space Research, Vol. 69, Issue 8, s. 3140–3163, doi: 10.1016/j.asr.2022.02.009
  • Wasilewski T.G., 2021, Lunar thermal mining: Phase change interface movement, production decline and implications for systems engineering, Planetary and Space Science, Vol. 199, doi: 10.1016/j.pss.2021.105199
  • Wasilewski T.G. i in., 2021, Experimental investigations of thermal properties of icy lunar regolith and their influence on phase change interface movement, Planetary and Space Science, Vol. 200, doi: 10.1016/j.pss.2021.105197
  • Wiśniewski Ł. i in., 2018, In Situ Measurements of Regolith Properties on Small Solar System Bodies using Spacecraft/Rover Hybrids, In Proceedings of the 69th International Astronautical Congress (IAC), Bremen, Germany, 1–5 October 2018.
  • Wiśniewski Ł. i in., 2021, Energy Dissipation during Surface Interaction of an Underactuated Robot for Planetary Exploration, MDPI Energies 2021, 14(14):4282, doi: 10.3390/en14144282
  • Cannon K.M., 2020, Physical Textures of Lunar Ice. https://kevincannon.rocks/lunarmining/#textures
  • Heiken G.H. et al., 1991, Lunar Sourcebook, Cambridge University Press, https://www.lpi.usra.edu/publications/books/lunar_sourcebook/
  • Planetary Simulant Database, Colorado School of Mines, https://simulantdb.com/

Document Type


Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.