Preferences help
enabled [disable] Abstract
Number of results
2012 | 66 | 6 | 66–76
Article title

Characteristics of ketogenic diet and its therapeutic properties in central nervous system disorders

Title variants
Charakterystyka diety ketogennej i jej właściwości terapeutycznych w chorobach centralnego układu nerwowego
Languages of publication
A fat-rich and low-carbohydrate ketogenic diet has been successfully used in epilepsy treatment in children and adults for many years. Lately, advances have been made in the use of ketogenics as therapy for other disorders such the tuberous sclerosis complex, brain tumors and neurodegenerative diseases: Alzheimer’s disease and Parkinson’s disease. Many studies have also shown its neuroprotective abilities. This neuroprotection is connected with the molecular mechanisms of a ketogenic diet and ketone metabolism. This review shows how a ketogenic diet induces ketosis, how it works and how the molecular mechanisms of a ketogenic diet may be used in the therapy of central nervous system disorders.
Wysokotłuszczowa, niskowęglowodanowa dieta ketogenna jest terapią, która od wielu lat z sukcesem jest stosowana u dzieci i dorosłych w leczeniu epilepsji. Późniejsze badania pozwoliły na rozszerzenie poszukiwań jej terapeutycznego zastosowania o stwardnienie guzowate, guzy mózgu i schorzenia neurodegeneracyjne, jak choroba Alzheimera i choroba Parkinsona. Wiele badań wykazało również neuroprotekcyjne właściwości tej terapii. Indukowanie neuroprotekcji jest związane z molekularnymi mechanizmami działania diety ketogennej i metabolizmem ciał ketonowych. Niniejsza praca opisuje działanie diety ketogennej oraz jej mechanizmy molekularne, które mogą być wykorzystywane w terapii chorób centralnego układu nerwowego.
Physical description
  • Department of Physiology School of Medicine in Katowice Medical University of Silesia in Katowice tel. +48 32 252 50 87 fax +48 32 252 60 77
  • Department of Physiology School of Medicine in Katowice Medical University of Silesia
  • Department of Physiology School of Medicine in Katowice Medical University of Silesia
  • 1. Cahill G.F., Jr. Fuel metabolism in starvation. Annu. Rev. Nutr. 2006; 26: 1–22.
  • 2. Melo T.M., Nehlig A., Sonnewald U. Neuronal-glial interactions in rats fed a ketogenic diet. Neurochem. Int. 2006; 48: 498–507.
  • 3. Gasior M., Rogawski M.A., Hartman A.L. Neuroprotective and disease-modifying eff ects of the ketogenic diet. Behav. Pharmacol. 2006; 17: 431–439.
  • 4. Gan S.K., Watts G.F. Is adipose tissue lipolysis always an adaptive response to starvation? Implications for non-alcoholic fatty liver disease. Clin. Sci. (Lond.). 2008; 114: 543–545.
  • 5. Jungas R.L., Halperin M.L., Brosnan J.T. Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol. Rev. 1992; 72: 419–448.
  • 6. Cahill G.F., Jr. Survival in starvation. Am. J. Clin. Nutr. 1998; 68: 1–2.
  • 7. Freeman J.M., Kossoff E.H., Hartman A.L. The ketogenic diet: one decade later. Pediatrics 2007; 119: 535–43.
  • 8. Freeman J.M., Kossoff E.H. Ketosis and the ketogenic diet, 2010: advances in treating epilepsy and other disorders. Adv. Pediatr. 2010; 57: 315–329.
  • 9. Hartman A.L., Gasior M., Vining E.P., Rogawski M.A. The neuropharmacology of the ketogenic diet. Pediatr. Neurol. 2007; 36: 281–292.
  • 10. Veech R.L. The therapeutic implications of ketone bodies: the eff ects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot. Essent. Fatty Acids 2004;70: 309–319.
  • 11. Delft van R., Lambrechts D., Verschuure P., Hulsman J., Majoie M. Blood beta-hydroxybutyrate correlates better with seizure reduction due to ketogenic diet than do ketones in the urine. Seizure 2010; 19: 36–39.
  • 12. Cahill G.F., Jr., Veech R.L. Ketoacids? Good medicine? Trans. Am. Clin. Climatol. Assoc. 2003; 114: 149–61; discussion 62–63.
  • 13. Laeger T., Metges C.C., Kuhla B. Role of beta-hydroxybutyric acid in the central regulation of energy balance. Appetite 2010; 54: 450–455.
  • 14. Johnstone A.M., Horgan G.W., Murison S.D., Bremner D.M., Lobley G.E. Eff ects of a high-protein ketogenic diet on hunger, appetite, and weight loss in obese men feeding ad libitum. Am. J. Clin. Nutr. 2008; 87: 44–55.
  • 15. Morris A.A. Cerebral ketone body metabolism. J. Inherit. Metab. Dis. 2005; 28: 109–21.
  • 16. Fukao T., Lopaschuk G.D., Mitchell G.A. Pathways and control of ketone body metabolism: on the fringe of lipid biochemistry. Prostaglandins Leukot. Essent. Fatty Acids 2004; 70: 243–251.
  • 17. Bough K.J., Rho J.M. Anticonvulsant mechanisms of the ketogenic diet. Epilepsia 2007; 48: 43–58.
  • 18. Yudkoff M., Daikhin Y., Nissim I., Lazarow A., Nissim I. Ketogenic diet, brain glutamate metabolism and seizure control. Prostaglandins Leukot. Essent. Fatty Acids 2004;70: 277–285.
  • 19. Kim do Y., Rho J.M. The ketogenic diet and epilepsy. Curr. Opin. Clin. Nutr. Metab. Care. 2008; 11: 113–120.
  • 20. Masino S.A., Kawamura M., Wasser C.D., Pomeroy L.T., Ruskin D.N. Adenosine, ketogenic diet and epilepsy: the emerging therapeutic relationship between metabolism and brain activity. Curr. Neuropharmacol. 2009; 7: 257–268.
  • 21. Ma W., Berg J., Yellen G. Ketogenic diet metabolites reduce fi ring in central neurons by opening K(ATP) channels. J. Neurosci. 2007; 27: 3618–3625.
  • 22. Veech R.L., Chance B., Kashiwaya Y., Lardy H.A., Cahill G.F., Jr. Ketone bodies, potential therapeutic uses. IUBMB Life. 2001; 51(4): 241–247.
  • 23. Rubenstein J.E. Use of the ketogenic diet in neonates and infants. Epilepsia 2008; 49 Suppl 8: 30–32.
  • 24. Spulber G., Spulber S., Hagenas L., Amark P., Dahlin M. Growth dependence on insulin-like growth factor-1 during the ketogenic diet. Epilepsia 2009; 50: 297–303.
  • 25. Kwiterovich P.O., Jr., Vining E.P., Pyzik P., Skolasky R. Jr., Freeman J.M. Eff ect of a high-fat ketogenic diet on plasma levels of lipids, lipoproteins, and apolipoproteins in children. JAMA 2003; 290: 912–920.
  • 26. Jabekk P.T., Moe I.A., Meen H.D,. Tomten S.E., Hostmark A.T. Resistance training in overweight women on a ketogenic diet conserved lean body mass while reducing body fat. Nutr. Metab. (Lond.) 2010; 7: 17.
  • 27. Ohtahara S., Ohtsuka Y., Yamatogi Y., Oka E., Yoshinaga H., Sato M. Prenatal etiologies of West syndrome. Epilepsia 1993; 34: 716–722.
  • 28. Westman E.C., Yancy W.S., Jr., Mavropoulos J.C., Marquart M., McDuffi e J.R. The eff ect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr. Metab. (Lond) 2008; 5: 36.
  • 29. Patel A., Pyzik P.L., Turner Z., Rubenstein J.E., Kossoff E.H. Long-term outcomes of children treated with the ketogenic diet in the past. Epilepsia 2010; 51: 1277–1282.
  • 30. Kossoff E.H., Pyzik P.L., McGrogan J.R., Vining E.P., Freeman J.M. Effi cacy of the ketogenic diet for infantile spasms. Pediatrics 2002; 109: 780–783.
  • 31. Wheless J.W. The ketogenic diet: an effective medical therapy with side eff ects. J. Child. Neurol. 2001; 16(9): 633–635.
  • 32. Vamecq J., Vallee L., Lesage F., Gressens P., Stables J.P. Antiepileptic popular ketogenic diet: emerging twists in an ancient story. Prog. Neurobiol. 2005; 75: 1–28.
  • 33. Maalouf M., Rho J.M., Mattson M.P. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res. Rev. 2009; 59: 293–315.
  • 34. Maalouf M., Sullivan P.G., Davis L., Kim D.Y., Rho J.M. Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience 2007; 145: 256–264.
  • 35. Jarrett S.G., Milder J.B., Liang L.P., Patel M. The ketogenic diet increases mitochondrial glutathione levels. J. Neurochem. 2008; 106: 1044–1051.
  • 36. Antosiewicz J., Spodnik J.H. et al. NADH-generating substrates reduce peroxyl radical toxicity in RL-34 cells. Folia Morphol. (Warsz) 2009; 68: 247–255.
  • 37. Suzuki M., Sato K., Dohi S., Sato T., Matsuura A., Hiraide A. Eff ect of beta-hydroxybutyrate, a cerebral function improving agent, on cerebral hypoxia, anoxia and ischemia in mice and rats. Jpn. J. Pharmacol. 2001; 87: 143–150.
  • 38. Noh H.S., Kim Y.S., Lee H.P. et al. The protective eff ect of a ketogenic diet on kainic acid-induced hippocampal cell death in the male ICR mice. Epilepsy Res. 2003; 53: 119–128.
  • 39. Noh H.S., Kang S.S., Kim D.W. et al. Ketogenic diet increases calbindin-D28k in the hippocampi of male ICR mice with kainic acid seizures. Epilepsy Res. 2005; 65: 153–159.
  • 40. Puchowicz M.A., Zechel J.L., Valerio J. et al. Neuroprotection in diet-induced ketotic rat brain after focal ischemia. J Cereb. Blood Flow Metab. 2008; 28: 1907–1916.
  • 41. Kossoff E.H., McGrogan J.R. Worldwide use of the ketogenic diet. Epilepsia 2005; 46: 280–289.
  • 42. Goldman R.D., Rogovik A.L. Ketogenic diet for treatment of epilepsy. Can. Fam. Physician 2010; 56: 540–542.
  • 43. During M.J., Spencer D.D. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 1993; 341: 1607–1610.
  • 44. Likhodii S., Nylen K., Burnham W.M. Acetone as an anticonvulsant. Epilepsia 2008; 49 Suppl 8: 83–86.
  • 45. Rahman A. The role of adenosine in Alzheimer’s disease. Curr. Neuropharmacol. 2009; 7: 207–216.
  • 46. Masino S.A., Geiger J.D. Are purines mediators of the anticonvulsant/neuroprotective eff ects of ketogenic diets? Trends Neurosci. 2008; 31: 273–278.
  • 47. Kawamura M., Jr., Ruskin D.N., Masino S.A. Metabolic autocrine regulation of neurons involves cooperation among pannexin hemichannels, adenosine receptors, and KATP channels. J. Neurosci. 2010; 30: 3886–3895.
  • 48. Hemingway C., Freeman J.M., Pillas D.J., Pyzik P.L. The ketogenic diet: a 3- to 6-year follow-up of 150 children enrolled prospectively. Pediatrics 2001; 108: 898 –905.
  • 49. Hong A.M., Turner Z., Hamdy R.F., Kossoff E.H. Infantile spasms treated with the ketogenic diet: prospective single-center experience in 104 consecutive infants. Epilepsia 2010; 51: 1403–1407.
  • 50. Ruggiero A., Cefalo G., Garre M.L. et al. Phase II trial of temozolomide in children with recurrent high-grade glioma. J. Neurooncol. 2006; 77: 89–94.
  • 51. Staff ord P., Abdelwahab M.G., Kim do Y., Preul M.C., Rho J.M., Scheck A.C. The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutr. Metab. (Lond). 2010; 7: 74.
  • 52. Seyfried T.N., Sanderson T.M., El-Abbadi M.M., McGowan R., Mukherjee P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br. J. Cancer 2003; 89: 1375–1382.
  • 53. Mukherjee P., El-Abbadi M.M., Kasperzyk J.L., Ranes M.K., Seyfried T.N. Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model. Br. J. Cancer 2002; 86: 1615–1621.
  • 54. Nebeling L.C., Miraldi F., Shurin S.B., Lerner E. Eff ects of a ketogenic diet on tumor metabolism and nutritional status in pediatric oncology patients: two case reports. J. Am. Coll. Nutr. 1995; 14: 202–208.
  • 55. Zuccoli G., Marcello N., Pisanello A. et al. Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case Report. Nutr. Metab. (Lond.) 2010; 7: 33.
  • 56. Seyfried T.N., Kiebish M.A., Marsh J., Shelton L.M., Huysentruyt L.C., Mukherjee P. Metabolic management of brain cancer. Biochim. Biophys. Acta. 2011; 1807: 577–594.
  • 57. Bonuccelli G., Whitaker-Menezes D., Castello-Cros R. et al. The reverse Warburg eff ect: glycolysis inhibitors prevent the tumor promoting eff ects of caveolin-1 defi cient cancer associated fi broblasts. Cell Cycle 2010; 9: 1960–1971.
  • 58. Rosner M., Dolznig H., Fuchs C., Siegel N., Valli A., Hengstschlager M. CDKs as therapeutic targets for the human genetic disease tuberous sclerosis? Eur. J. Clin. Invest. 2009; 39: 1033–1035.
  • 59. Burgstaller S., Rosner M., Lindengrun C. et al. Tuberin, p27 and mTOR in diff erent cells. Amino Acids. 2009; 36: 297–302.
  • 60. Avruch J., Long X., Lin Y. et al. Activation of mTORC1 in two steps: Rheb- -GTP activation of catalytic function and increased binding of substrates to raptor. Biochem. Soc. Trans. 2009; 37(Pt 1): 223–236.
  • 61. Proud C.G. Cell signaling. mTOR, unleashed. Science 2007; 318(5852): 926 –927.
  • 62. Crino P.B., Nathanson K.L., Henske E.P. The tuberous sclerosis complex. N. Engl. J. Med. 2006; 355: 1345–1356.
  • 63. Kossoff E.H., Thiele E.A., Pfeifer H.H., McGrogan J.R., Freeman J.M. Tuberous sclerosis complex and the ketogenic diet. Epilepsia 2005; 46: 1684–1686.
  • 64. Chu-Shore C.J., Thiele E.A. Tumor growth in patients with tuberous sclerosis complex on the ketogenic diet. Brain Dev. 2010; 32: 318–322.
  • 65. Inoki K., Zhu T., Guan K.L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577–590.
  • 66. Sengupta S., Peterson T.R., Laplante M., Oh S., Sabatini D.M. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010; 468: 1100–1104.
  • 67. McDaniel S.S., Rensing N.R., Thio L.L., Yamada K.A., Wong M. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia 2011; 52: e7–11.
  • 68. Tsai A.C., Pan S.L., Lai C.Y. et al. The inhibition of angiogenesis and tumor growth by denbinobin is associated with the blocking of insulin-like growth factor- 1 receptor signaling. J. Nutr. Biochem. 2011; 22: 625–633.
  • 69. Bhatia B., Northcott P.A., Hambardzumyan D. et al. Tuberous sclerosis complex suppression in cerebellar development and medulloblastoma: separate regulation of mammalian target of rapamycin activity and p27 Kip1 localization. Cancer Res. 2009; 69: 7224–7234.
  • 70. Sicinski P., Zacharek S., Kim C. Duality of p27Kip1 function in tumorigenesis. Genes Dev. 2007; 21: 1703–1706.
  • 71. Guh J.Y., Chuang T.D., Chen H.C. et al. Beta-hydroxybutyrate-induced growth inhibition and collagen production in HK- -2 cells are dependent on TGF-beta and Smad3. Kidney Int. 2003; 64: 2041–2051.
  • 72. Sabbagh M., Cummings J. Progressive cholinergic decline in Alzheimer’s Disease: consideration for treatment with donepezil 23 mg in patients with moderate to severe symptomatology. BMC Neurol. 2011; 11: 21.
  • 73. Selkoe D.J. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 2001; 81: 741–766.
  • 74. Gasparini L., Gouras G.K., Wang R. et al. Stimulation of beta-amyloid precursor protein traffi cking by insulin reduces intraneuronal beta-amyloid and requires mitogen- activated protein kinase signaling. J. Neurosci. 2001; 21: 2561–2570.
  • 75. Auwera Van der I., Wera S., Van Leuven F., Henderson S.T. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutr. Metab. (Lond.) 2005; 2: 28.
  • 76. Suji G., Sivakami S. Glucose, glycation and aging. Biogerontology 2004; 5: 365– 373.
  • 77. Proctor D.T., Coulson E.J., Dodd P.R. Post-synaptic scaff olding protein interactions with glutamate receptors in synaptic dysfunction and Alzheimer’s disease. Prog. Neurobiol. 2011; 93: 509–521.
  • 78. Fredholm B.B., Dunwiddie T.V. How does adenosine inhibit transmitter release? Trends Pharmacol. Sci. 1988; 9(4): 130–134.
  • 79. Przedborski S., Vila M., Jackson-Lewis V. Neurodegeneration: what is it and where are we? J. Clin. Invest. 2003; 111: 3–10.
  • 80. Tieu K., Perier C., Caspersen C. et al. D- -beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J. Clin. Invest. 2003; 112: 892–901.
  • 81. Langston J.W. The etiology of Parkinson’s disease with emphasis on the MPTP story. Neurology 1996; 47(6 Suppl 3): S153–160.
  • 82. Samii A., Nutt J.G., Ransom B.R. Parkinson’s disease. Lancet 2004; 363(9423): 1783–1793.
  • 83. Vanitallie T.B., Nonas C., Di Rocco A., Boyar K., Hyams K., Heymsfi eld S.B. Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study. Neurology 2005; 64: 728–730.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.