PL EN


Preferences help
enabled [disable] Abstract
Number of results
2007 | 7 | 2 | 108-116
Article title

Regulacja łaknienia

Content
Title variants
EN
Appetite control
Languages of publication
EN PL
Abstracts
EN
The authors present most up-to-date knowledge on mechanisms responsible for regulation of appetite and body mass. It is common knowledge, that the process of food intake depends on many factors: physiological, environmental, cognitive, emotional and behavioral. Within the human central nervous system, the area most closely associated with control of food intake is the hypothalamus and its structures. Regulation of food intake involves also nuclei of the solitary tract (nucleus tractus solitarii), amygdala, prefrontal cortex, area postrema, arcuate nuclei and periventricular nuclei. According to the “dual” hypothesis of appetite control, ventro-medial nucleus of the thalamus plays the role of satiety center, while lateral nucleus of the hypothalamus – that of the hunger center. Several specific hypothalamic nuclei and neuronal pathways, including numerous neurotransmitters and modulators, create a complex network within the hypothalamus which controls appetite. Several peptides produced within the digestive tract cross the blood-brain barrier and may be found in various parts of the central nervous system (hypothalamus, hypophysis) and, by acting directly on appetite-controlling centers, contribute to it’s short-term regulation. Signals from upper part of the digestive tract are probably responsible for postprandial satiety. Based on a review of recent literature, discussed are both central (POMCα, MSH, CART, NPY, AgRP, OXA) and peripheral regulators (CCK, GLP-1, PYY, LEP, GRE, INS, adiponectin, rezistin, OXM), acting centrally (originating in the digestive tract, adipose tissue and pancreas) mechanisms controlling body mass and their complex interrelations.
PL
Autorzy przedstawili stan najnowszej wiedzy na temat mechanizmów odpowiedzialnych za regulację łaknienia i masy ciała. Wiadomo, że proces pobierania pokarmu zależy od wielu czynników: fizjologicznych, środowiskowych, poznawczych, emocjonalnych i behawioralnych. W OUN człowieka obszarem najbardziej związanym z kontrolą przyjmowania pożywienia jest podwzgórze i jego struktury. W regulację pobierania pokarmu zaangażowane są także: jądro pasma samotnego, ciała migdałowate, kora przedczołowa, miejsce najdalsze, jądro łukowate i okołokomorowe. Wg „dualnej” hipotezy regulacji łaknienia – jądro brzusznoprzyśrodkowe podwzgórza pełni rolę ośrodka sytości, zaś boczne podwzgórze – ośrodka głodu. Szereg specyficznych jąder podwzgórza oraz szlaków neuronalnych przy udziale licznych neurotransmiterów i modulatorów tworzy w podwzgórzu skomplikowaną sieć regulującą łaknienie. Szereg peptydów produkowanych przez przewód pokarmowy przenika przez barierę krew – mózg i znajduje się także w OUN (podwzgórze, przysadka) i, oddziałując bezpośrednio na ośrodki łaknienia, odgrywa rolę w chwilowej jego regulacji. Sygnały z górnego odcinka przewodu pokarmowego są prawdopodobnie odpowiedzialne za poposiłkową sytość. Na podstawie przeglądu najnowszego piśmiennictwa omówiono ośrodkowe (POMC – α-MSH, CART, NPY, AgRP, OXA) i obwodowe regulatory (CCK, GLP-1, PYY, LEP, GRE, INS, adiponektyna, rezystyna, OXM ), działające ośrodkowo (pochodzące z przewodu pokarmowego, tkanki tłuszczowej oraz trzustki) masy ciała i skomplikowane mechanizmy ich działania.
Discipline
Year
Volume
7
Issue
2
Pages
108-116
Physical description
References
  • 1. Tighe S., Dinan T.: An overview of the central control of weight regulation and the effect of antipsychotic medication. J. Psychopharmacol. 2005; 19 (supl. 6): 36-46.
  • 2. Kalra S.P., Dube M.G., Pu S. i wsp.: Interacting appetiteregulating pathways in the hypothalamic regulation of body weight. Endocr. Rev. 1999; 20: 68-100.
  • 3. Konturek P.C., Konturek J.W., Czesnikiewicz-Guzik M. i wsp.: Neuro-hormonal control of food intake; basic mechanisms and clinical implications. J. Physiol. Pharmacol. 2005; 56 (supl. 6): 5-25.
  • 4. Druce M.R., Small C.J., Bloom S.R.: Minireview: Gut peptides regulating satiety. Endocrinology 2004; 145: 2660-2665.
  • 5. Lee D.W., Leinung M.C., Rozhavskaya-Arena M., Grasso P.: Leptin and the treatment of obesity: its current status. Eur. J. Pharmacol. 2002; 440: 129-139.
  • 6. Diamond F.B. Jr., Eichler D.C., Duckett G. i wsp.: Demonstration of a leptin binding factor in human serum. Biochem. Biophys. Res. Commun. 1997; 233: 818-822.
  • 7. Liu C., Liu X.J., Barry G. i wsp.: Expression and characterization of a putative high affinity human soluble leptin receptor. Endocrinology 1997; 138: 3548-3554.
  • 8. Nogalska A, Swierczynski J.: Leptyna – hormon o wielu funkcjach. Postepy Biochem. 2001; 47: 200-211.
  • 9. Licinio J., Mantzoros C., Negrao A.B. i wsp.: Human leptin levels are pulsatile and inversely related to pituitary-adrenal function. Nat. Med. 1997; 3: 575-579.
  • 10. Matsuda J., Yokota I., Iida M. i wsp.: Serum leptin concentration in cord blood: relationship to birth weight and gender. J. Clin. Endocrinol. Metab. 1997; 82: 1642-1644.
  • 11. Volkoff H., Eykelbosh A.J., Peter R.E.: Role of leptin in the control of feeding of goldfish Carassius auratus: interactions with cholecystokinin, neuropeptide Y and orexin A, and modulation by fasting. Brain Res. 2003; 972: 90-109.
  • 12. Kolaczynski J.W., Nyce M.R., Considine R.V. i wsp.: Acute and chronic effects of insulin on leptin production in humans: Studies in vivo and in vitro. Diabetes 1996; 45: 699-701.
  • 13. Kulik-Rechberger B.: Leptyna – sygnał metaboliczny z tkanki tłuszczowej. Przegl. Lek. 2003; 60: 35-39.
  • 14. Hommel J.D., Trinko R., Sears R.M. i wsp.: Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 2006; 51: 801-810.
  • 15. Kojima M., Hosoda H., Date Y. i wsp.: Ghrelin is a growthhormone-releasing acylated peptide from stomach. Nature 1999; 402: 656-660.
  • 16. Wu J.T., Kral J.G.: Ghrelin: integrative neuroendocrine peptide in health and disease. Ann. Surg. 2004; 239: 464-474.
  • 17. Lazarczyk M.A., Lazarczyk M., Grzela T.: Ghrelin: a recently discovered gut-brain peptide (review). Int. J. Mol. Med. 2003; 12: 279-287.
  • 18. Nakai Y., Hosoda H., Nin K. i wsp.: Plasma levels of active form of ghrelin during oral glucose tolerance test in patients with anorexia nervosa. Eur. J. Endocrinol. 2003; 149: R1-R3.
  • 19. Pombo M., Pombo C.M., Garcia A. i wsp.: Hormonal control of growth hormone secretion. Horm. Res. 2001; 55 (supl. 1): 11-16.
  • 20. Cummings D.E., Purnell J.Q., Frayo R.S. i wsp.: A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001; 50: 1714-1719.
  • 21. Broglio F., Arvat E., Benso A. i wsp: Ghrelin, a natural GH secretagogue produced by the stomach, induces hyperglycemia and reduces insulin secretion in humans. J. Clin. Endocrinol. Metab. 2001; 86: 5083-5086.
  • 22. Caixas A., Bashore C., Nash W. i wsp.: Insulin, unlike food intake, does not suppress ghrelin in human subjects. J. Clin. Endocrinol. Metab. 2002; 87: 1902.
  • 23. Lee H.M., Wang G., Englander E.W. i wsp.: Ghrelin, a new gastrointestinal endocrine peptide that stimulates insulin secretion: enteric distribution, ontogeny, influence of endocrine, and dietary manipulations. Endocrinology 2002; 143: 185-190.
  • 24. Date Y., Nakazato M., Hashiguchi S. i wsp.: Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. Diabetes 2002; 51: 124-129.
  • 25. Mieda M., Yanagisawa M.: Sleep, feeding, and neuropeptides: roles of orexins and orexin receptors. Curr. Opin. Neurobiol. 2002; 12: 339-345.
  • 26. Willie J.T., Chemelli R.M., Sinton C.M., Yanagisawa M.: To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu. Rev. Neurosci. 2001; 24: 429-458.
  • 27. de Lecea L., Kilduff T.S., Peyron C. i wsp.: The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl Acad. Sci. USA 1998; 95: 322-327.
  • 28. Sakurai T., Amemiya A., Ishii M. i wsp.: Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein – coupled receptors that regulate feeding bahavior. Cell 1998; 92: 573-585.
  • 29. Gautvik K.M., de Lecea L., Gautvik V.T. i wsp.: Overview of the most prevalent hypothalamus-specific mRNAs, as identified by directional tag PCR subtraction. Proc. Natl Acad. Sci. USA 1996; 93: 8733-8738.
  • 30. Peyron C., Tighe D.K., van den Pol A.N. i wsp.: Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 1998; 18: 9996-10015.
  • 31. Blanco M., Lopez M., GarcIa-Caballero T. i wsp.: Cellular localization of orexin receptors in human pituitary. J. Clin. Endocrinol. Metab. 2001; 86: 1616-1619.
  • 32. Date Y., Nakazato M., Matsukura S.: A role for orexins and melanin-concentrating hormone in the central regulation of feeding behavior. Nippon Rinsho 2001; 59: 427-430.
  • 33. Backberg M., Hervieu G., Wilson S., Meister B.: Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake. Eur. J. Neurosci. 2002; 15: 315-328.
  • 34. Cai X.J., Widdowson P.S., Harrold J. i wsp.: Hypothalamic orexin expression: modulation by blood glucose and feeding. Diabetes 1999; 48: 2132-2137.
  • 35. Kirchgessner A.L.: Orexins in the brain-gut axis. Endocr. Rev. 2002; 23: 1-15.
  • 36. Cluderay J.E., Harrison D.C., Hervieu G.J.: Protein distribution of the orexin-2 receptor in the rat central nervous system. Regul. Pept. 2002; 104: 131-144.
  • 37. Burdyga G., Lal S., Spiller D.: Localization of orexin-1 receptors to vagal afferent neurons in the rat and humans. Gastroenterology 2003; 124: 129-139.
  • 38. Karteris E., Randeva H.S.: Orexin receptors and G-protein coupling: evidence for another “promiscuous” seven transmembrane domain receptor. J. Pharmacol. Sci. 2003; 93: 126-128.
  • 39. Nakabayashi M., Suzuki T., Takahashi K. i wsp.: Orexin-A expression in human peripheral tissues. Mol. Cell. Endocrinol. 2003; 205: 43-50.
  • 40. Matsuzaki I., Sakurai T., Kunii K. i wsp.: Involvement of the serotonergic system in orexin-induced behavioral alterations in rats. Regul. Pept. 2002; 104: 119-123.
  • 41. Szekely M., Petervari E., Balasko M. i wsp.: Effects of orexins on energy balance and thermoregulation. Regul. Pept. 2002; 104: 47-53.
  • 42. Fadel J., Bubser M., Deutch A.Y.: Differential activation of orexin neurons by antipsychotic drugs associated with weight gain. J. Neurosci. 2002; 22: 6742-6746.
  • 43. Mashiko S., Ishihara A., Iwaasa H. i wsp.: A pair-feeding study reveals that a Y5 antagonist causes weight loss in diet-induced obese mice by modulating food intake and energy expenditure. Mol. Pharmacol. 2007; 71: 602-608.
  • 44. Ste Marie L., Luquet S., Cole T.B., Palmiter R.D.: Modulation of neuropeptide Y expression in adult mice does not affect feeding. Proc. Natl Acad. Sci. USA 2005; 102: 18632-18637.
  • 45. Fekete C., Sarkar S., Rand W.M. i wsp.: Neuropeptide Y1 and Y5 receptors mediate the effects of neuropeptide Y on the hypothalamic-pituitary-thyroid axis. Endocrinology 2002; 143: 4513-4519.
  • 46. Kern P.A., Ranganathan S., Li C., Wood L. i wsp.: Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 2001; 280: E745-E751.
  • 47. Kern P.A., Saghizadeh M., Ong J.M. i wsp.: The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J. Clin. Invest. 1995; 95: 2111-2119.
  • 48. Mitchell M., Armstrong D.T., Robker R.L., Norman R.J.: Adipokines: implications for female fertility and obesity. Reproduction 2005; 130: 583-597.
  • 49. Hotta K., Funahashi T., Arita Y. i wsp.: Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol.2000; 20: 1595-1599.
  • 50. Kern P.A., Di Gregorio G.B., Lu T. i wsp.: Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes 2003; 52: 1779-1785.
  • 51. Ng P.C., Lee C.H., Lam C.W. i wsp.: Resistin in preterm and term newborns: relation to anthropometry, leptin, and insulin. Pediatr. Res. 2005; 587: 725-730.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-6e8ff40c-e09c-4a6c-bb17-ce17bd5b1df7
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.