PL EN


Preferences help
enabled [disable] Abstract
Number of results
2009 | 9 | 2 | 116-124
Article title

Stres a czynność układu neuroendokrynnego

Content
Title variants
EN
Stress and neuroendocrine function
Languages of publication
EN PL
Abstracts
EN
Stress is frequently seen as a significant contributor to disease, including psychiatric illness. Systems within the body try to maintain constancy facing stressful events. Glucocorticoid secretion is one of the most frequent responses to stressful events. Adrenal steroid secretion has a multiple actions on the brain and body. Acute elevations of adrenal steroids promote adaptive processes, such as increased appetite, memory, immunological function. Chronic elevation of glucocorticoids suppresses immune defence, promotes insulin resistance and abdominal fat deposition, impairs memory and increases fear response and anxiety. Stressors activate the release and turnover of noradrenaline, along with the release of catecholamines from the autonomic nervous system. Stressors also activate serotonin turnover and thereby activate a system that has both anxiogenic and anxiolytic pathways within the forebrain. Another deleterious result of repeated stress is the atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Stressful life events are acknowledged as an important risk factor for major depressive illness and posttraumatic stress disorder (PTSD), and possible also for schizophrenia (SCH). PTSD and SCH appear to involve neuroanatomical disturbances in hippocampal volume and structure, whereas major depressive illness may be linked through glucocorticoid excess to reduced hippocampal volume and cognitive impairment. The researches on the effect of chronic and acute stress on the nervous system and other systems of the body should be continued, as they could be useful in preventing deleterious effects of stress leading to developing and progression of somatic and psychiatric disorders.
PL
Stres jest czynnikiem przyczyniającym się do rozwoju nie tylko wielu chorób somatycznych, ale również psychicznych. W obliczu stresu organizm stara się utrzymać stałość układów wewnętrznych - jest to proces zwany allostazą. Najczęstszą odpowiedź na wydarzenia stresowe stanowi sekrecja glikokortykoidów, które mają wielotorowe działania na mózg i ciało. Nagły wzrost poziomu hormonów sterydowych sprzyja procesom adaptacyjnym, takim jak wzrost apetytu, polepszenie pamięci i wzmożenie odporności. Przewlekle podwyższony poziom tych hormonów przyczynia się do powstania otyłości brzusznej, insulinooporności, supresji układu immunologicznego, a także osłabia pamięć oraz wzmaga odpowiedź w postaci lęku i niepokoju. Stresory aktywują uwalnianie i obrót noradrenaliny (NA) wraz z uwolnieniem katecholamin w autonomicznym układzie nerwowym. Stres aktywuje również metabolizm serotoniny, w wyniku czego dochodzi do aktywacji systemu mającego działanie zarówno lękotwórcze, jak i anksjolityczne w obrębie przodomózgowia. Szkodliwym skutkiem powtarzającego się stresu jest również atrofia szczytowych dendrytów neuronów piramidowych obszaru CA3 hipokampa. Stresujące wydarzenia życiowe są uznawane za ważne czynniki ryzyka powstawania dużej depresji i zaburzeń związanych ze stresem (PTSD) i prawdopodobnie schizofrenii (SCH). Pojawienie się PTSD i SCH łączy się z zaburzeniami neuroanatomicznymi w rozmiarze i strukturze hipokampa, a rozwój depresji może być związany m.in. z nadmiarem glikokortykoidów (GK), powodującym redukcję rozmiaru hipokampa i w konsekwencji zaburzenia poznawcze. Badania nad skomplikowanym wpływem ostrego i przewlekłego stresu na ośrodkowy układ nerwowy i inne układy wymagają kontynuacji, mogą przynieść dane pozwalające na skutecznie zapobieganie jego niekorzystnym efektom prowadzącym do rozwoju lub nasilenia przebiegu wielu chorób, zarówno somatycznych, jak i psychicznych.
Discipline
Year
Volume
9
Issue
2
Pages
116-124
Physical description
References
  • 1. Sterling P., Eyer J.: Allostasis: a new paradigm to explain arousal pathology. W: Fisher S., Reason J. (red.): Handbook of Life Stress, Cognition, and Health. John Wiley & Sons, New York 1988: 629-649.
  • 2. McEwen B.S., Angulo J., Cameron H. i wsp.: Paradoxical effects of adrenal steroids on the brain: protection versus degeneration. Biol. Psychiatry 1992; 31:177-199.
  • 3. Munck A., Guyre P.M., Holbrook N.J.: Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr. Rev. 1984; 5: 25-44.
  • 4. Selye H.: The Stress of Life. McGraw-Hill, New York 1956.
  • 5. de Quervain D.J.F., Roozendaal B., McGaugh J.L.: Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 1998; 394: 787-790.
  • 6. Roozendaal B., Carmi O., McGaugh J.L.: Adrenocortical suppression blocks the memory-enhancing effects of amphetamine and epinephrine. Proc. Natl Acad. Sci. USA 1996; 93:1429-1433.
  • 7. Dhabhar F.S., McEwen B.S.: Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav. Immun. 1997; 11: 286-306.
  • 8. Bjorntorp P.: ”Portal” adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 1990; 10: 493-496.
  • 9. Brindley D.N., Rolland Y.: Possible connections between stress, diabetes, obesity, hypertension and altered lipoprotein metabolism that may result in atherosclerosis. Clin. Sci. (Lond.) 1989; 77: 453-461.
  • 10. Jayo J.M., Shively C.A., Kaplan J.R., Manuck S.B.: Effects of exercise and stress on body fat distribution in male cynomolgus monkeys. Int. J. Obes. Relat. Metab. Disord. 1993; 17: 597-604.
  • 11. Newcomer J.W., Selke G., Melson A.K. i wsp.: Decreased memory performance in healthy humans induced by stress-level cortisol treatment. Arch. Gen. Psychiatry 1999; 56: 527-533.
  • 12. Wolkowitz O.M., Reus VI., Weingartner H. i wsp.: Cognitive effects of corticosteroids. Am. J. Psychiatry 1990; 147: 1297-1303.
  • 13. Sapolsky R.M., Krey L.C., McEwen B.S.: The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr. Rev. 1986; 7: 284-301.
  • 14. Sapolsky R.M.: Stress, the Aging Brain, and the Mechanisms of Neuron Death. MIT Press, Cambridge, MA1992.
  • 15. Leonard J.P., MacKenzie F.J., Patel H.A., Cuzner M.L.: Hypothalamic noradrenergic pathways exert an influence on neuroendocrine and clinical status in experimental autoimmune encephalomyelitis. Brain Behav. Immun. 1991; 5: 328-338.
  • 16. Morrow L.E., McClellan J.L., Conn C.A., Kluger M.J.: Glucocorticoids alter fever and IL-6 responses to psychological stress and to lipopolysaccharide. Am. J. Physiol. 1993; 264: R1010-R1016.
  • 17. Ramey E.R., Goldstein M.S.: The adrenal cortex and the sympathetic nervous system. Physiol. Rev. 1957; 37: 155-195.
  • 18. Spencer R.L., McEwen B.S.: Adaptation of the hypothalamic-pituitary-adrenal axis to chronic ethanol stress. Neuroendocrinology 1990; 52: 481-489.
  • 19. Sternberg E.M., Young W.S. 3rd, Bernardini R. i wsp.: A central nervous system defect in biosynthesis of corticotropin-releasing hormone is associated with susceptibility to streptococcal cell wall-induced arthritis in Lewis rats. Proc. Natl Acad. Sci. USA 1989; 86: 4771-4775.
  • 20. Weiss J.M., McEwen B.S., Silva M.T, Kalkut M.: Pituitary-adrenal alterations and fear responding. Am. J. Physiol. 1970; 218: 864-868.
  • 21. Tsuda A., Tanaka M.: Differential changes in noradrenaline turnover in specific regions of rat brain produced by controllable and uncontrollable shocks. Behav. Neurosci. 1985; 99: 802-817.
  • 22. Weiss J.M., Goodman P.A., Losito B.G. i wsp.: Behavioral depression produced by an uncontrollable stressor: relationship to norepinephrine, dopamine, and serotonin levels in various regions of rat brain. Brain Res. Brain Res. Rev. 1981; 3:167-205.
  • 23. Nisenbaum L.K., Zigmond M.J., Sved A.F., Abercrombie E.D.: Prior exposure to chronic stress results in enhanced synthesis and release of hippocampal norepinephrine in response to a novel stressor. J. Neurosci. 1991; 11:1478-1484.
  • 24. Pacak K., Armando I., Komoly S. i wsp.: Hypercortisolemia inhibits yohimbine-induced release of norepinephrine in the posterolateral hypothalamus of conscious rat. Endocrinology 1992; 131: 1369-1376.
  • 25. Pacak K., Kvetnansky R., Palkovits M. i wsp.: Adrenalectomy augments in vivo release of norepinephrine in the paraventricular nucleus during immobilization stress. Endocrinology 1993; 133:1404-1410.
  • 26. Doze V.A., Cohen G.A., Madison D.V: Synaptic localization of adrenergic disinhibition in the rat hippocampus. Neuron 1991; 6: 889-900.
  • 27. Dunwiddie TV, Taylor M., Heginbotham L.R., Proctor W.R.: Long-term increases in excitability in the CA1 region of rat hippocampus induced by beta-adrenergic stimulation: possible mediation by cAMP. J. Neurosci. 1992; 12: 506-517.
  • 28. Nisenbaum L.K., Abercrombie E.D.: Presynaptic alterations associated with enhancement of evoked release and synthesis of norepinephrine in hippocampus of chronically cold-stressed rats. Brain Res. 1993; 608: 280-287.
  • 29. Deakin J.F.W, Graeff F.G.: 5-HT and mechanisms of defence. J. Psychopharmacol. 1991; 5: 305-315.
  • 30. Graeff F.G.: Role of 5-HT in defensive behavior and anxiety. Rev. Neurosci. 1993; 4:181-211.
  • 31. Archer T: Serotonin and fear retention in the rat. J. Comp. Physiol. Psychol. 1982; 96: 491-516.
  • 32. Azmitia E.C. Jr, McEwen B.S.: Adrenalcortical influence on rat brain tryptophan hydroxylase activity. Brain Res. 1974; 78: 291-302.
  • 33. Neckers L., Sze P.Y.: Regulation of 5-hydroxytryptamine metabolism in mouse brain by adrenal glucocorticoids. Brain Res. 1975; 93:123-132.
  • 34. Singh VB., Corley K.C., Phan TH., Boadle-Biber M.C.: Increases in the activity of tryptophan hydroxylase from rat cortex and midbrain in response to acute or repeated sound stress are blocked by adrenalectomy and restored by dexamethasone treatment. Brain Res. 1990; 516: 66-76.
  • 35. Kuroda Y., Mikuni M., Nomura N., Takahashi K.: Differential effect of subchronic dexamethasone treatment on serotonin-2 and beta-adrenergic receptors in the rat cerebral cortex and hippocampus. Neurosci. Lett. 1993; 155: 195-198.
  • 36. Kuroda Y., Mikuni M., Ogawa T., Takahashi H.: Effect of ACTH, adrenalectomy and the combination treatment on the density of 5-HT2 receptor binding sites in neocortex of rat forebrain and 5-HT2 receptor-mediated wet-dog shake behaviors. Psychopharmacology (Berl.) 1992; 108: 27-32.
  • 37. Burnet P.W.J., Mefford I.N., Smith C.C. i wsp.: Hippocampal 8-[3H]hydroxy-2-(di-n-propylamino)tetralin binding site densities, serotonin receptor (5-HT1A) messenger ribonucleic acid abundance, and serotonin levels parallel the activity of the hypothalamopituitary-adrenal axis in rat. J. Neurochem. 1992; 59:1062-1070.
  • 38. Chalmers D.T, Kwak S.P., Mansour A. i wsp.: Corticosteroids regulate brain hippocampal 5-HT1A receptor mRNA expression. J. Neurosci. 1993; 13: 914-923.
  • 39. Martire M., Pistritto G., Preziosi P.: Different regulation of serotonin receptors following adrenal hormone imbalance in the rat hippocampus and hypothalamus. J. Neural Transm. 1989; 78: 109-120.
  • 40. McKittrick C.R., Blanchard D.C., Blanchard R.J. i wsp.: Serotonin receptor binding in a colony model of chronic social stress. Biol. Psychiatry 1995; 37: 383-393.
  • 41. Williams R.B., Chesney M.A.: Psychosocial factors and prognosis in established coronary artery disease. The need for research on interventions. JAMA 1993; 270:1860-1861.
  • 42. Williams R.B., Williams VP.: Anger Kills. Seventeen Strategies for Controlling the Hostility That Can Harm Your Health. Harper Perennial, New York 1993.
  • 43. Muldoon M.F., Manuck S.B., Matthews K.A.: Lowering cholesterol concentrations and mortality: a quantitative review of primary prevention trials. BMJ1990; 301:309-314.
  • 44. Muldoon M.F., Kaplan J.R., Manuck S.B., Mann J.J.: Effects of a low-fat diet on brain serotonergic responsivity in cynomolgus monkeys. Biol. Psychiatry 1992; 31: 739-742.
  • 45. Al-Damluji S., White A.: Central noradrenergic lesion impairs the adrenocorticotrophin response to release of endogenous catecholamines. J. Neuroendocrinol. 1992; 4: 319-323.
  • 46. Saphier D.: Adrenoceptor regulation of paraventricular nucleus neuronal activity as related to hypothalamo-pituitary-adrenocortical responses. W: Kvetnansky R., McCarty R., Axelrod J. (red.): Stress: Neuroendocrine and Molecular Approaches. Gordon and Breach Science Publishers, New York 1992: 481-488.
  • 47. Welch J.E., Farrar G.E., Dunn A.J., Saphier D.: Central 5-HT1A receptors inhibit adrenocortical secretion. Neuroendocrinology 1993; 57: 272-281.
  • 48. Akana S.F., Dallman M.F., Bradbury M.J. i wsp.: Feedback and facilitation in the adrenocortical system: unmasking facilitation by partial inhibition of the glucocorticoid response to prior stress. Endocrinology 1992; 131: 57-68.
  • 49. Bailey J.M.: New mechanisms for effects of anti-inflammatory glucocorticoids. Biofactors 1991; 3: 97-102.
  • 50. Kaplan J.R., Adams M.R., Clarkson TB. i wsp.: Social behavior and gender in biomedical investigations using monkeys: studies in atherogenesis. Lab. Anim. Sci. 1991; 41: 334-343.
  • 51. Troisi R.J., Weiss S.T, Parker D.R. i wsp.: Relation of obesity and diet to sympathetic nervous system activity. Hypertension 1991; 17: 669-677.
  • 52. Dhabhar F.S., McEwen B.S.: Enhancing versus suppressive effects of stress hormones on skin immune function. Proc. Natl Acad. Sci. USA 1999; 96:1059-1064.
  • 53. Dhabhar F.S., Miller A.H., McEwen B.S., Spencer R.L.: Stress-induced changes in blood leukocyte distribution. Role of adrenal steroid hormones. J. Immunol. 1996; 157: 1638-1644.
  • 54. Cohen S., Tyrrell D.A.J., Smith A.P.: Psychological stress and susceptibility to the common cold. N. Engl. J. Med. 1991; 325: 606-612.
  • 55. Kiecolt-Glaser J.K., Glaser R.: Stress and immune function in humans. W: Ader R., Felten D.L., Cohen N. (red.): Psychoneuroimmunology. Academic Press, San Diego, CA 1991: 849-867.
  • 56. Hagglof B., Blom L., Dahlquist G. i wsp.: The Swedish childhood diabetes study: indications of severe psychological stress as a risk factor for type 1 (insulin-dependent) diabetes mellitus in childhood. Diabetologia 1991; 34: 579-583.
  • 57. Winsa B., Adami H.O., Bergstrom R. i wsp.: Stressful life events and Graves’ disease. Lancet 1991; 338:1475-1479.
  • 58. Weiner H.: Perturbing the Organism: The Biology of Stressful Experience. University of Chicago Press, Chicago, IL 1992.
  • 59. Mrazek D.A., Klinnert M.: Asthma: psychoneuroimmuno-logic considerations. W: Ader R., Felten D.L., Cohen N. (red.) Psychoneuroimmunology. Academic Press, San Diego, CA 1991:1013-1035.
  • 60. Yehuda R., Giller E.L., Southwick S.M. i wsp.: Hypothalamic-pituitary-adrenal dysfunction in posttraumatic stress disorder. Biol. Psychiatry 1991; 30:1031-1048.
  • 61. Madden K.S., Felten D.L.: Experimental basis for neural-immune interactions. Physiol. Rev. 1995; 75: 77-106.
  • 62. McEwen B.S., Sapolsky R.M.: Stress and cognitive function. Curr. Opin. Neurobiol. 1995; 5: 205-216.
  • 63. Winokur A., Maislin G., Phillips J.L., Amsterdam J.D.: Insulin resistance after oral glucose tolerance testing in patients with major depression. Am. J. Psychiatry 1988; 145: 325-330.
  • 64. Anisman H., Merali Z.: Chronic stressors and depression: distinguishing characteristics and individual profiles. Psychopharmacology (Berl.) 1997; 134: 330-332.
  • 65. Edwards E., Harkins K., Wright G., Henn F.: Effects of bilateral adrenalectomy on the induction of learned helplessness behavior. Neuropsychopharmacology 1990; 3:109-114.
  • 66. Musselman D.L., Evans D.L., Nemeroff C.B.: The relationship of depression to cardiovascular disease: epidemiology, biology, and treatment. Arch. Gen. Psychiatry 1998; 55: 580-592.
  • 67. Musselman D.L., Tomer A., Manatunga A.K. i wsp.: Exaggerated platelet reactivity in major depression. Am. J. Psychiatry 1996; 153:1313-1317.
  • 68. Thakore J.H., Richards P.J., Reznek R.H. i wsp.: Increased intra-abdominal fat deposition in patients with major depressive illness as measured by computed tomography. Biol. Psychiatry 1997; 41:1140-1142.
  • 69. Krittayaphong R., Cascio W.E., Light K.C. i wsp.: Heart rate variability in patients with coronary artery disease: differences in patients with higher and lower depression scores. Psychosom. Med. 1997; 59: 231-235.
  • 70. Michelson D., Stratakis C., Hill L. i wsp.: Bone mineral density in women with depression. N. Engl. J. Med. 1996; 335: 1176-1181.
  • 71. Eichenbaum H., Otto T., Cohen N.J.: The hippocampus - what does it do? Behav. Neural Biol. 1992; 57: 2-36.
  • 72. Gray J.: Precis of ‘The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal System’. Behav. Brain Sci. 1982; 5: 469-534.
  • 73. Sakai N., Tanaka C.: Inhibitory modulation of long-term potentiation via the 5-HT1A receptor in slices of the rat hippocampal dentate gyrus. Brain Res. 1993; 613: 326-330.
  • 74. Diamond D.M., Bennett M.C., Fleshner M., Rose G.M.: Inverted-U relationship between the level of peripheral corticosterone and the magnitude of hippocampal primed burst potentiation. Hippocampus 1992; 2: 421-430.
  • 75. Gould E., McEwen B.S.: Neuronal birth and death. Curr. Opin. Neurobiol. 1993; 3: 676-682.
  • 76. McEwen B.S., Stellar E.: Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 1993; 153: 2093-2101.
  • 77. Sheline Y.I., Sanghavi M., Mintun M.A., Gado M.H.: Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J. Neurosci. 1999; 19: 5034-5043.
  • 78. Drevets W.C., Price J.L., Simpson J.R. Jr: Subgenual pre-frontal cortex abnormalities in mood disorders. Nature 1997; 386: 824-827.
  • 79. Bremner J.D., Randall P., Scott TM. i wsp.: MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am. J. Psychiatry 1995; 152: 973-981.
  • 80. Bremner J.D., Randall P., Vermetten E. i wsp.: Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse - a preliminary report. Biol. Psychiatry 1997; 41: 23-32.
  • 81. Gurvits TV, Shenton M.E., Hokama H. i wsp.: Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol. Psychiatry 1996; 40:1091-1099.
  • 82. Woolley C.S., Gould E., McEwen B.S.: Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 1990; 531:225-231.
  • 83. Watanabe Y., Gould E., Cameron H.A. i wsp.: Phenytoin prevents stress- and corticosterone-induced atrophy of CA3 pyramidal neurons. Hippocampus 1992; 2: 431-435.
  • 84. Magarińos A.M., McEwen B.S.: Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 1995; 69: 83-88.
  • 85. Magarińos A.M., Deslandes A., McEwen B.S.: Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur. J. Pharmacol. 1999; 371:113-122.
  • 86. Fuchs E., Uno H., Flugge G.: Chronic psychosocial stress induces morphological alterations in hippocampal pyramidal neurons of the tree shrew. Brain Res. 1995; 673:275-282.
  • 87. Mizoguchi K., Kunishita T, Chui D.H., Tabira T: Stress induces neuronal death in the hippocampus of castrated rats. Neurosci. Lett. 1992; 138: 157-160.
  • 88. Uno H., Tarara R., Else J.G. i wsp.: Hippocampal damage associated with prolonged and fatal stress in primates. J. Neurosci. 1989; 9: 1705-1711.
  • 89. Magarińos A.M., McEwen B.S., Flugge G., Fuchs E.: Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J. Neurosci. 1996; 16: 3534-3540.
  • 90. Conrad C.D., LeDoux J.E., Magarińos A.M., McEwen B.S.: Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav. Neurosci. 1999; 113: 902-913.
  • 91. Luine V., Villegas M., Martinez C., McEwen B.S.: Repeated stress causes reversible impairments of spatial memory performance. Brain Res. 1994; 639: 167-170.
  • 92. Kaplan M.S., Bell D.H.: Mitotic neuroblasts in the 9-day-old and 11-month-old rodent hippocampus. J. Neu-rosci. 1984; 4: 1429-1441.
  • 93. Kaplan M.S., Hinds J.W.: Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 1977; 197: 1092-1094.
  • 94. Cameron H.A., Woolley C.S., McEwen B.S., Gould E.: Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 1993; 56: 337-344.
  • 95. Tanapat P., Gould E.: EGF stimulates proliferation of granule cell precursors in the dentate gyrus of adult rats (abstract 130.9). Abstr. Soc. Neurosci. 1997; 23: 317.
  • 96. Eriksson P.S., Perfilieva E., Bjork-Eriksson T. i wsp.: Neurogenesis in the adult human hippocampus. Nat. Med. 1998; 4: 1313-1317.
  • 97. Parent J.M., Yu T.W., Leibowitz R.T. i wsp.: Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 1997; 17: 3727-3738.
  • 98. Bengzon J., Kokaia Z., Elmer E. i wsp.: Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc. Natl Acad. Sci. USA 1997; 94: 10432-10437.
  • 99. Cameron H.A., Gould E.: Distinct populations of cells in the adult dentate gyrus undergo mitosis or apoptosis in response to adrenalectomy. J. Comp. Neurol. 1996; 369: 56-63.
  • 100. Cameron H.A., McEwen B.S., Gould E.: Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J. Neurosci. 1995; 15: 4687-4692.
  • 101. Noguchi S., Higashi K., Kawamura M.: A possible role of the beta-subunit of (Na,K)-ATPase in facilitating correct assembly of the alpha-subunit into the membrane. J. Biol. Chem. 1990; 265:15991-15995.
  • 102. Jacobs B.L., Tanapat P., Reeves A.J., Gould E.: Serotonin stimulates the production of new hippocampal granule neurons via the 5HT1A receptor in the adult rat (abstract 796.6). Abstr. Soc. Neurosci. 1998; 24: 1992.
  • 103. Radley J.J., Jocobs B.L., Tanapat P.: Blockade of 5HT1A receptors prevents hippocampal granule cell genesis during and after pilocarpine-induced status epilepticus (abstract 796.5). Abstr. Soc. Neurosci. 1998; 24: 1992.
  • 104. Cameron H.A., McKay R.D.: Restoring production of hippocampal neurons in old age. Nat. Neurosci. 1999; 2: 894-897.
  • 105. Landfield P.W., Eldridge J.C.: Evolving aspects of the glucocorticoid hypothesis of brain aging: hormonal modulation of neuronal calcium homeostasis. Neurobiol. Aging 1994; 15: 579-588.
  • 106. Sherry D.F., Jacobs L.F., Gaulin S.J.: Spatial memory and adaptive specialization of the hippocampus. Trends Neurosci. 1992; 15: 298-303.
  • 107. Galea L.A.M., Kavaliers M., Ossenkopp K.P. i wsp.: Sexually dimorphic spatial learning varies seasonally in two populations of deer mice. Brain Res. 1994; 635:18-26.
  • 108. Galea L.A.M., McEwen B.S.: Sex and seasonal differences in the rate of cell proliferation in the dentate gyrus of adult wild meadow voles. Neuroscience 1999; 89: 955-964.
  • 109. Galea L.A.M., Tanapat P., Gould E.: Exposure to predator odor suppresses cell proliferation in the dentate gyrus of adult rats via a cholinergic mechanism (abstract 474.8). Abstr. Soc. Neurosci. 1996; 22: 1196.
  • 110. Starkman M.N., Gebarski S.S., Berent S., Schteingart D.E.: Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing’s syndrome. Biol. Psychiatry 1992; 32: 756-765.
  • 111. Convit A., de Leon M.J., Tarshish C. i wsp.: Hippocampal volume losses in minimally impaired elderly. Lancet 1995; 345: 266.
  • 112. Lupien S., Lecours A.R., Lussier I. i wsp.: Basal cortisol levels and cognitive deficits in human aging. J. Neurosci. 1994; 14: 2893-2903.
  • 113. Lupien S.J., de Leon M., de Santi S. i wsp.: Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat. Neurosci. 1998; 1: 69-73.
  • 114. de Leon M.J., Golomb J., George A.E. i wsp.: The radiologic prediction of Alzheimer disease: the atrophic hippocampal formation. AJNR Am. J. Neuroradiol. 1993; 14: 897-906.
  • 115. Kennett G.A., Dickinson S.L., Curzon G.: Central serotonergic responses and behavioural adaptation to repeated immobilisation: the effect of the corticosterone synthesis inhibitor metyrapone. Eur. J. Pharmacol. 1985; 119: 143-152.
  • 116. Phillips R.G., LeDoux J.E.: Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 1992; 106: 274-285.
  • 117. Green B.L., Lindy J.D., Grace M.C., Leonard A.C.: Chronic posttraumatic stress disorder and diagnostic comorbidity in a disaster sample. J. Nerv. Ment. Dis. 1992; 180: 760-766.
  • 118. Norman R.M., Malla A.K.: Stressful life events and schizophrenia. I: A review of the research. Br. J. Psychiatry 1993; 162: 161-166.
  • 119. Barbeau D., Liang J.J., Robitalille Y. i wsp.: Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains. Proc. Natl Acad. Sci. USA 1995; 92: 2785-2789.
  • 120. Bogerts B., Lieberman J.A., Ashtari M. i wsp.: Hippocampus-amygdala volumes and psychopathology in chronic schizophrenia. Biol. Psychiatry 1993; 33: 236-246.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-6b88d24d-4a18-4936-bc5b-2cb0a4e9f46c
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.