PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2018 | 67 | 1 | 75-93
Article title

Aktyna i miozyny w jądrze komórkowym

Content
Title variants
EN
Actins and myosins in the nucleus
Languages of publication
PL EN
Abstracts
PL
Aktyna i miozyna to białka kojarzone przede wszystkim z ich kluczową rolą w generacji skurczu mięśni. Natomiast poza izoformami charakterystycznymi dla mięśni są również izoformy aktyny i miozyny, które występują we wszystkich typach komórek i tkanek (patrz artykuł Suszek i współaut. w tym zeszycie KOSMOSU). Badania prowadzone w ostatnich dwóch dekadach wykazały niezbicie, że zarówno aktyna (i szereg białek wiążących aktynę) oraz liczne miozyny (przedstawiciele rodzin I, II, V, VI, XVI i XVIII) lokalizują się w jądrze komórkowym gdzie są zaangażowane w procesy transkrypcji i naprawy DNA, transport w nukleoplazmie oraz import i eksport jądrowy, a także w utrzymywanie architektury jądra. Niniejszy artykuł opisuje dotychczasowy stan wiedzy o roli układu akto-miozynowego w jądrze komórkowym.
EN
Actin and myosins are the proteins mainly known from their key roles in muscle contraction. However, besides typical muscle isoforms there are actins and myosins that are present in all cell and tissue types. Studies performed within the last two decades have irrefutably shown that both the cytoplasmic actin isoforms (along with numerous actin-binding proteins) as well as many myosins (representing class I, II, V, VI, XVI and XVIII) are present within the nucleus. They play important roles in nuclear processes as they are involved in transcription and DNA repair, intranuclear transport as well as nuclear import and export, and in maintenance of nuclear architecture. This article describes the current knowledge on the acto-myosin system in this biggest cellular compartment.
Journal
Year
Volume
67
Issue
1
Pages
75-93
Physical description
Dates
published
2018
Contributors
author
  • Pracownia Molekularnych Podstaw Ruchów Komórkowych, Zakład Biochemii, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Instiute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw,, Poland
  • Pracownia Molekularnych Podstaw Ruchów Komórkowych, Zakład Biochemii, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN, Pasteura 3, 02-093 Warszawa, Polska
  • Laboratory of Molecular Basis of Cell Motility, Department of Biochemistry, Nencki Instiute of Experimental Biology PAS, 3 Pasteur Str., 02-093 Warsaw,, Poland
References
  • Ajima R., Kajiya K., Inoue T., Tani M., Shiraishi-Yamaguchi Y., Maeda M., Segawa T., Furuichi T., Sutoh K., Yokota J., 2007. HOMER2 binds MYO18B and enhances its activity to suppress anchorage independent growth. Biochem. Biophys. Res. Comm. 356, 851-856.
  • Ajima R., Akazawa H., Kodama M., Takeshita F., Otsuka A., Kohno T., Komuro I., Ochiya T., Yokota J., 2008. Deficiency of Myo18B in mice results in embryonic lethality with cardiac myofibrillar aberrations. Genes Cells 13, 987-999.
  • Almuzzaini B., Sarshad A. A., Farrants A. K., Percipalle P., 2015. Nuclear myosin 1 contributes to a chromatin landscape compatible with RNA polymerase II transcription activation. BMC Biol. 13, 35.
  • Baarlink C., Wang H., Grosse R., 2013. Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340, 864-867.
  • Barylko B., Binns D. D., Albanesi J. P., 2000. Regulation of the enzymatic and motor activities of myosin I. Biochim. Biophys. Acta 1496, 23-35.
  • Barylko B., Jung G., Albanesi J. P., 2005. Structure, function, and regulation of myosin 1C. Acta Biochim. Pol. 52, 373-380.
  • Batters C., Veigel C., 2016. Mechanics and activation of unconventional Myosins. Traffic 17, 860-71.
  • Belin B. J., Mullins R. D., 2013. What we talk about when we talk about nuclear actin. Nucleus 4, 291-297.
  • Belin B. J., Lee T., Mullins R. D., 2015. DNA damage induces nuclear actin filament assembly by Formin-2 and Spire-(1/2) that promotes efficient DNA repair. eLife 4, e07735
  • Bleeker F. E., Lamba S., Rodolfo M., Scarpa A., Leenstra S., Vandertop W. P., Bardelli A., 2009. Mutational profiling of cancer candidate genes in glioblastoma, melanoma and pancreatic carcinoma reveals a snapshot of their genomic landscapes. Hum. Mutat. 30, E451-E459.
  • Bohnsack M. T., Stüven T., Kuhn C., Cordes V. C., Görlich D., 2006. A selective block of nuclear actin export stabilizes the giant nuclei of Xenopus oocytes. Nat. Cell Biol. 8, 257-263.
  • Brunel C., Lelay M. N., 1979. Two-dimensional analysis of proteins associated with heterogenous nuclear RNA in various animal cell lines. Eur. J. Biochem. 99, 273-283.
  • Burke B., Stewart C. L., 2013. The nuclear lamins: flexibility in function. Nat. Rev. Mol. Cell. Biol. 14, 13-24.
  • Buschman M. D., Field S. J., 2017. MYO18A: An unusual myosin. Adv. Biol. Regul., doi: 10.1016/j.jbior.2017.09.005.
  • Cairns B. R., Erdjument-Bromage H., Tempst P., Winston F., Kornberg R. D., 1998. Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Mol. Cell 2, 639-651.
  • Cameron R. S., Liu C., Mixon A. S., Pihkala J. P. S., Rahn R. J., Cameron P. L., 2007. Myosin16b: The COOH-tail region directs localization to the nucleus and overexpression delays S-phase progression. Cell Motil. Cytoskeleton 64, 19-48.
  • Cameron R. S., Liu C., Pihkala J. P., 2013. Myosin 16 levels fluctuate during the cell cycle and are downregulated in response to DNA replication stress. Cytoskeleton 70, 328-338.
  • Castano E., Philimonenko V. V., Kahle M., Fukalová J., Kalendová A., Yildirim S., Dzijak R., Dingová-Krásna H., Hozák P., 2010. Actin complexes in the cell nucleus: new stones in an old field. Histochem. Cell Biol. 33, 607-626.
  • Ceulemans H., Bollen M., 2004. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol. Rev. 84, 1-39.
  • Chuang C. H., Carpenter A. E., Fuchsova B., Johnson T., de Lanerolle P., Belmont A. S., 2006. Long-range directional movement of an interphase chromosome site. Curr. Biol. 16, 825-831.
  • Cisterna B., Necchi D., Prosperi E., Biggiogera M., 2006. Small ribosomal subunits associate with nuclear myosin and actin in transit to the nuclear pores. FASEB J. 20, 1901-1903.
  • Clark T. G., Merriam R. W., 1978. Actin in Xenopus oocytes. J. Cell Biol. 77, 427-438.
  • Clements L., Manilal S., Love D. R., Morris G. E., 2000. Direct interaction between emerin and lamin A. Biochem. Biophys. Res. Comm. 267, 709-714.
  • Cohen P. T., 2002. Protein phosphatase 1 - targeted in many directions. J. Cell Sci. 115, 241-256.
  • Coluccio L. M., 2008. Myosin I. Proteins Cell Regul. 7, 95-124.
  • Correas I., Speicher D. W., Marchesi V. T., 1986. Structure of the spectrin-actin binding site of erythrocyte protein 4.1. J. Biol. Chem. 261, 13362-13366.
  • Cruz de la J. R., Torre C., Moreno Díaz de la Espina S., 2008. Nuclear actin in plants. Cell. Biol. Int. 32, 584-587.
  • de Lanerolle P., 2006. Nuclear myosin I is necessary for the formation of the first phosphodiester bond during transcription initiation by RNA polymerase II. J. Cell Biochem. 99, 1001-1009.
  • de Lanerolle P., 2012. Nuclear actin and myosins at a glance. J. Cell Sci. 125, 4945-4949.
  • de Lanerolle P., Serebryannyy L., 2011. Nuclear actin and myosins: life without filaments. Nat. Cell Biol. 13, 1282-1288.
  • Dechat T., Adam S. A., Taimen P., Shimi T., Goldman R. D., 2010. Nuclear lamins. Cold Spring Harb. Perspect. Biol. 2, a000547.
  • Deng W., Lopez-Camacho C., Tang J. Y., Mendoza-Villanueva D., Maya-Mendoza A., Jackson D. A., Shore P., 2012. Cytoskeletal protein filamin A is a nucleolar protein that suppresses ribosomal RNA gene transcription. Proc. Natl. Acad. Sci. USA 109, 1524-1529.
  • Diakowski W., Grzybek M., Sikorski A. F., 2006. Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily. Folia Histochem. Cytobiol. 44, 231-248.
  • Dingova H., Fukalova J., Maninova M., Philimonenko V. V., Hozak P., 2009. Ultrastructural localization of actin and actin-binding proteins in the nucleus. Histochem. Cell Biol. 131, 425-434.
  • Dopie J., Skarp K. P., Rajakyla E. K., Tanhuanpaa K., Vartiainen M. K., 2012. Active maintenance of nuclear actin by importin 9 supports transcription. Proc. Natl. Acad. Sci. USA 109, E544-E552.
  • Dzijak R., Yildirim S., Kahle M., Novák P., Hnilicová J., Venit T., Hozák P., 2012. Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner. PLoS One 7,e30529.
  • Esnault C., Stewart A., Gualdrini F., East P., Horswell S., Matthews N., Treisman R., 2014. Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev. 28, 943-958.
  • Fili N., Hari-Gupta Y., Dos Santos Á., Cook A., Poland S., Ameer-Beg S. M., Parsons M., Toseland C. P., 2017. NDP52 activates nuclear myosin VI to enhance RNA polymerase II transcription. Nat. Comm. 8, 1871.
  • Fomproix N., Percipalle P., 2004. An actin-myosin complex on activelytranscribing genes. Exp. Cell Res. 294, 140-148.
  • Fuchsova B., Serebryannyy L. A., de Lanerolle P., 2015. Nuclear actin and myosins in adenovirus infection. Exp. Cell Res. 338, 170-182.
  • Fujiwara T., Suzuki S., Kanno M., Sugiyama H., Takahashi H., Tanaka J., 2006. Mapping a nucleolar targeting sequence of an RNA binding nucleolar protein, Nop25. Exp. Cell Res. 312, 1703-1712.
  • Fukui Y., Katsumaru H., 1980. Dynamics of nuclear actin bundle induction by dimethyl sulfoxide and factors affecting its development. J. Cell Biol. 84, 131-140.
  • Furusawa T., Ikawa S., Yanai N., Obinata M., 2000. Isolation of a novel PDZ-containing myosin from hematopoietic supportive bone marrow stromal cell lines. Biochem. Biophys. Res. Comm. 270, 67-75.
  • Galarneau L., Nourani A., Boudreault A. A., Zhang Y., Héliot L., Allard S., Savard J., Lane W. S., Stillman D. J., Côté J., 2000. Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol. Cell 5, 927-937.
  • Gedge L. J., Morrison E. E., Blair G. E., Walker J. H., 2005. Nuclear actin is partially associated with Cajal bodies in human cells in culture and relocates to the nuclear periphery after infection of cells by adenovirus 5. Exp. Cell Res. 303, 229-239.
  • Gerace L., Huber M. D., 2012. Nuclear lamina at the crossroads of the cytoplasm and nucleus. J. Struct. Biol. 177, 24-31.
  • Gieni R. S., Hendzel M. J., 2009. Actin dynamics and functions in the interphase nucleus: moving toward an understanding of nuclear polymeric actin. Biochem. Cell Biol. 87, 283-306.
  • Gillespie P. G., Albanesi J. P., Bahler M., Bement W. M., Berg J. S., Burgess D. R., Burnside B., Cheney R. E., Corey D. P., Coudrier E., 2001. Myosin-I nomenclature. J. Cell Biol. 155, 703-704.
  • Gounon P., Karsenti E., 1981. Involvement of contractile proteins in the changes in consistency of oocyte nucleoplasm of the newt Pleurodeles waltlii. J. Cell Biol. 88, 410-421.
  • Gruenbaum Y., Margalit A., Goldman R. D., Shumaker D. K., Wilson K. L., 2005. The nuclear lamina comes of age. Nat. Rev. Mol. Cell Biol. 6, 21-31.
  • Grummt I., 2006. Actin and myosin as transcription factors. Curr. Opin. Genet. Dev. 16, 191-196.
  • Gurung R., Ono Y., Baxendale S., Lee S. L., Moore S., Calvert M., Ingham P. W., 2017. A Zebrafish Model for a Human Myopathy Associated with Mutation of the Unconventional Myosin MYO18B. Genetics 205, 725-735.
  • Gustafson W. C., Taylor C. W., Valdez B. C., Henning D., Phippard A., Ren Y., Busch H., Durban E., 1998. Nucleolar protein p120 contains an arginine-rich domain that binds to ribosomal RNA. Biochem. J. 331, 387-393.
  • Hasson T., Mooseker M. S., 1996. Vertebrate unconventional myosins. J. Biol. Chem. 271, 16431-16434.
  • Hiriart E., Bardouillet L., Manet E., Gruffat H., Penin F., Montserret R., Farjot G., Sergeant A., 2003. A region of the Epstein-Barr virus (EBV) mRNA export factor EB2 containing an arginine-rich motif mediates direct binding to RNA. J. Biol. Chem. 278, 37790-37798.
  • Ho C. Y., Lammerding J., 2012. Lamins at a glance. J. Cell Sci. 125, 2087-2093.
  • Ho C. Y., Jaalouk D. E., Vartiainen M. K., Lammerding J., 2013. LaminA/C and emerin regulate MKL1-SRF activity by modulatingactin dynamics. Nature 497, 507-511.
  • Hofmann W., Reichart B., Ewald A., Muller E., Schmitt I., Stauber R. H., Lottspeich F., Jockusch B. M., Scheer U., Hauber J., Dabauvalle M., C, 2001. Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J. Cell Biol. 152, 895-910.
  • Hofmann W. A,. Stojiljkovic L., Fuchsova B., Vargas G. M., Mavrommatis E., Philimonenko V., Kyselá K., Goodrich J. A., Lessard J. L., Hope T. J., Hozak P., de Lanerolle P., 2004. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat. Cell Biol. 6, 1094-1101.
  • Hofmann W. A., Johnson T., Klapczynski M., Fan J. L., de Lanerolle P., 2006. From transcription to transport: emerging roles for nuclear myosin I. Biochem. Cell Biol. 84, 418-426.
  • Hofmann W. A., Arduini A., Nicol S. M., Camacho C. J., Lessard J. L., Fuller-Pace F. V., de Lanerolle P., 2009. SUMOylation of nuclear actin. J. Cell Biol. 186, 193-200.
  • Holaska J. M., Wilson K. L., 2007. An emerin 'proteome': purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry 46, 8897-8908.
  • Holaska J. M., Kowalski A. K., Wilson K. L., 2004. Emerin caps the pointed end of actin filaments: evidence for an actin cortical network at the nuclear inner membrane. PLoS Biol. 2, E231.
  • Hu Q., Kwon Y. S., Nunez E., Cardamone M. D., Hutt K. R., Ohgi K. A., Garcia-Bassets I., Rose D. W., Glass C. K., Rosenfeld M. G., Fu X. D., 2008. Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc. Natl. Acad. Sci. USA 105,19199-19204.
  • Hwang K. J., Mahmoodian F., Ferretti J. A., Korn E. D., Gruschus J. M., 2007. Intramolecular interaction in the tail of Acanthamoeba myosin IC between the SH3 domain and a putative pleckstrin homology domain. Proc. Natl. Acad. Sci. USA. 104, 784-789.
  • Ihnatovych I., Migocka-Patrzalek M., Dukh M., Hofmann W. A., 2012. Identification and characterization of a novel myosin Ic isoform that localizes to the nucleus. Cytoskeleton 69, 555-565.
  • Jung E. J., Liu G., Zhou W., Chen X., 2006. Myosin VI is a mediator of the p53-dependent cell survival pathway. Mol. Cell. Biol. 26, 2175-2186.
  • Kahle M., Pridalova J., Spacek M., Dzijak R., Hozak P., 2007. Nuclear myosin is ubiquitously expressed and evolutionary conserved in vertebrates. Histochem. Cell Biol. 127, 139-148.
  • Karolczak J., Pavlyk I., Majewski L., Sobczak M., Niewiadomski P., Rzhepetskyy Y., Sikorska A., Nowak N., Pomorski P., Prószyński T., Ehler E., Rędowicz M. J., 2015. Involvement of unconventional myosin VI in myoblast function and myotube formation. Histochem. Cell Biol. 144, 21-38.
  • Karsenti E., Gounon P., Bornens M., 1978. Immunocytochemical study of lampbrush chromosomes: presence of tubulin and actin. Biol. Cell 31, 210-224.
  • King L., Jhou C. R., 2010. Nuclear titin interacts with histones. Chang Gung Med. J. 33, 201-210
  • Kiseleva E., Drummond S. P., Goldberg M. W., Rutherford S. A., Allen T. D., Wilson K. L., 2004. Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles in Xenopus oocyte nuclei. J. Cell Sci. 117, 2481-2490.
  • Kokai E., Beck H., Weissbach J., Arnold F., Sinske D., Sebert U., Gaiselmann G., Schmidt V., Walther P., Münch J., Posern G., Knöll B., 2014. Analysis of nuclear actin by overexpression of wild-type and actin mutant proteins. Histochem. Cell Biol. 141, 123-135.
  • Korn E. D., 2000. Coevolution of head, neck, and tail domains of myosin heavy chains. Proc. Natl. Acad. Sci. USA 97, 12559-12564.
  • Kristó I., Bajusz I., Bajusz C., Borkúti P., Vilmos P., 2016. Actin, actin-binding proteins, and actin-related proteins in the nucleus. Histochem. Cell Biol. 145, 373-388.
  • Kukalev A., Nord Y., Palmberg C., Bergman T., Percipalle P., 2005. Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat. Struct. Mol. Biol. 12, 238-244.
  • Kumeta M., Yoshimura S. H., Hejna J., Takeyasu K., 2012. Nucleocytoplasmic shuttling of cytoskeletal proteins: molecular mechanism and biological significance. Int. J. Cell Biol. 2012, 494902.
  • Kyselá K., Philimonenko A. A., Philimonenko V. V., Janácek J., Kahle M., Hozák P., 2005. Nuclear distribution of actin and myosin I depends on transcriptional activity of the cell. Histochem. Cell Biol. 124, 347-358.
  • Lamond A. I., Spector D. L., 2003. Nuclear speckles: A model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 4, 605-612.
  • Lattanzi G., Cenni V., Marmiroli S., Capanni C., Mattioli E., Merlini L., Squarzoni S., Marald N. M., 2003. Association of emerin with nuclear and cytoplasmic actin is regulated in differentiating myoblasts. Biochem. Biophys. Res. Comm. 303, 764-770.
  • Lederer M., Jockusch B. M., Rothkegel M., 2005. Profilin regulates the activity of p42POP, a novel Myb-related transcription factor. J. Cell Sci. 118, 331-341.
  • Lee K. K., Haraguchi T., Lee R. S., Koujin T., Hiraoka Y., Wilson K. L., 2001. Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J. Cell Sci. 114, 4567-4573.
  • Lénárt P., Bacher C. P., Daigle N., Hand A. R., Eils R., Terasaki M., Ellenberg J., 2005. A contractile nuclear actin network drives chromosome congression in oocytes. Nature 436, 812-818.
  • Li Q., Sarna S. K., 2009. Nuclear myosin II regulates the assembly of preinitiation complex for ICAM-1 gene transcription. Gastroenterology 137, 1051-1060.
  • Lindsay A. J., McCaffrey M. W., 2009. Myosin Vb localises to nucleoli and associates with the RNA polymerase I transcription complex. Cell Motil. Cytoskeleton 66, 1057-1072.
  • Linke W. A., Kulke M., Li H., Fujita-Becker S., Neagoe C., Manstein D. J., Gautel M., Fernandez J. M., 2002. PEVK domain of titin:an entropic spring with actin-binding properties. J. Struct. Biol. 137, 194-205.
  • Loikkanen I., Toljamo K., Hirvikoski P., Väisänen T., Paavonen T. K., Vaarala M. H., 2009. Myosin VI is a modulator of androgen-dependent gene expression. Oncol. Rep. 22, 991-995.
  • Machado C., Andrew D. J., 2000. D-titin: a giant protein with dual roles in chromosomes and muscles. J. Cell Biol. 151, 639-652.
  • Machado C., Sunkel C. E., Andrew D. J., 1998. Human autoantibodies reveal titin as a chromosomal protein. J. Cell Biol. 141, 321-333.
  • Majewski Ł., Sobczak M., Redowicz M. J., 2010. Myosin VI is associated with secretory granules and is present in the nucleus in adrenal medulla chromaffin cells. Acta Biochim. Pol. 57, 109-114.
  • Majewski Ł., Sobczak M., Wasik A., Skowronek K., Rędowicz M. J., 2011. Myosin VI in PC12 cells plays important roles in cell migration and proliferation but not in catecholamine secretion. J. Muscle Res. Cell Motil. 32, 291-302.
  • Majewski L., Nowak J., Sobczak M., Karatsai O., Havrylov S., Lenartowski R., Suszek M., Lenartowska M., Redowicz M. J., 2018. Myosin VI in the nucleus of neurosecretory PC12 cells: Stimulation-dependent nuclear translocation and interaction with nuclear proteins. Nucleus 9, 125-141.
  • Maundrell K., Scherrer K., 1979. Characterization of pre-messenger-RNA-containing nuclear ribonucleoprotein particles from avian erythroblasts. Eur. J. Biochem. 99, 225-238.
  • McDonald D., Carrero G., Andrin C., de Vries G., Hendzel M. J., 2006. Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. J. Cell Biol. 172, 541-552.
  • McMahon L. W., Zhang P., Sridharan D. M., Lefferts J. A., Lambert M. W., 2009. Knockdown of alphaII spectrin in normal human cells by siRNA leads to chromosomal instability and decreased DNA interstrand cross-link repair. Biochem. Biophys. Res. Comm. 381, 288-293.
  • Menard I., Gervais F. G., Nicholson D. W., Roy S., 2006. Caspase-3 cleaves the formin-homology-domain-containing protein FHOD1 during apoptosis to generate a C-terminal fragment that is targeted to the nucleolus. Apoptosis 11, 1863-1876.
  • Meyer A. J., Almendrala D. K., Go M. M., Krauss S. W., 2011. Structural protein 4.1R is integrally involved in nuclear envelope protein localization, centrosome-nucleus association and transcriptional signaling. J. Cell Sci. 124, 1433-1444.
  • Migocka-Patrzalek M., Makowiecka A., Nowak D., Mazur A. J., Hofmann W. A., Malicka-Blaszkiewicz M., 2015. Beta- and gamma-actins in the nucleus of human melanoma A375 cells. Histochem. Cell Biol. 144, 417-428.
  • Miron M. J., Gallouzi I. E., Lavoie J. N., Branton P. E., 2004. Nuclear localization of the adenovirus E4orf4 protein is mediated through an arginine-rich motif and correlates with cell death. Oncogene 23, 7458-68. Erratum in: Oncogene. 2005, 24, 4162.
  • Mislow J. M., Holaska J. M., Kim M. S., Lee K. K., Segura-Totten M., Wilson K. L., McNally E. M., 2002. Nesprin-1alpha self-associates and binds directly to emerin and lamin A in vitro. FEBS Lett. 525, 135-140.
  • Miyamoto K., Gurdon J. B., 2013. Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins. Cell. Mol. Life Sci. 70, 3289-3302.
  • Mori K., Matsuda K., Furusawa T., Kawata M., Inoue T., Obinata M., 2005. Subcellular localization and dynamics of MysPDZ (Myo18A) in live mammalian cells. Biochem. Biophys. Res. Comm. 326, 491-498.
  • Mori M., Monnier N., Daigle N., Bathe M., Ellenberg J., Lénárt P., 2011. Intracellular transport by an anchored homogeneously contracting F-actin meshwork. Curr. Biol. 21, 606-611.
  • Morriswood B., Ryzhakov G., Puri C., Arden S. D., Roberts R., Dendrou C., Kendrick-Jones J., Buss F., 2007. T6BP and NDP52 are myosin VI binding partners with potential roles in cytokine signalling and cell adhesion. J. Cell Sci. 120, 2574-2585.
  • Nakano T., Tani M., Nishioka M., Kohno T., Otsuka A., Ohwada S., Yokota J., 2005. Genetic and epigenetic alterations of the candidate tumor-suppressor gene MYO18B, on chromosome arm 22q, in colorectal cancer. Genes Chromosomes Cancer 43, 162-171.
  • Nishida S., Hiruma S., Hashimoto S., 1987. Immunohistochemical change of actin in experimental myocardial ischemia. Its usefulness to detect very early myocardial damages. Histol. Histopathol. 2, 417-428.
  • Nishioka M., Kohno T., Tani M., Yanaihara N., Tomizawa Y., Otsuka A., Sasaki S., Kobayashi K., Niki T., Maeshima A., Sekido Y., Minna J. D., Sone S., Yokota J., 2002. MYO18B, acandidate tumor suppressor gene at chromosome 22q12.1, deleted, mutated, and methylated inhuman lung cancer. Proc. Natl. Acad. Sci. USA 99, 12269-12274.
  • Nowak G., Pestic-Dragovich L., Hozak P., Philimonenko A., Simerly C., Schatten G., de Lanerolle P., 1997. Evidence for the presence of myosin I in the nucleus. J. Biol. Chem. 272, 17176-17181.
  • Nowak J., Majewski Ł., Sobczak M., Lenartowska M., Lenartowski R., Rędowicz M. J., 2017, A new role of myosin VI in the nucleolus. Konferencja 4-D Nucleome: The Cell Nucleus in Space and Time Programme, Poster 17.
  • Obrdlik A., Percipalle P., 2011. The F-actin severing protein cofilin-1 is required for RNA polymerase II transcription elongation. Nucleus 2, 72-79.
  • Obrdlik A., Kukalev A., Louvet E., Farrants A. K., Caputo L., Percipalle P., 2008. The histone acetyltransferase PCAF associates with actin and hnRNP U for RNA polymerase II transcription. Mol. Cell. Biol. 28, 6342-6357.
  • Omabegho T., Gurel P. S., Cheng C. Y., Kim L. Y., Ruijgrok P. V., Das R, Alushin G. M., Bryant Z., 2018 Controllable molecular motors engineered from myosin and RNA. Nat. Nanotechnol. 13, 34-40.
  • Patel K. G., Liu C., Cameron P. L., Cameron R. S., 2001. Myr 8, a novel unconventional myosin expressed during brain development associates with the protein phosphatase catalytic subunits 1alpha and 1gamma1. J. Neurosci. 21, 7954-7968.
  • Pazdrak K., Shi X. Z., Sarna S. K., 2004. TNF alpha suppresses human colonic circular smooth muscle cell contractility by SP1- and NF-kappa B-mediated induction of ICAM-1. Gastroenterology 127, 1096-1109.
  • Pendleton A., Pope B., Weeds A., Koffer A., 2003. Latrunculin B or ATP depletion induces cofilin-dependent translocation of actin into nuclei of mast cells. J. Biol. Chem. 278, 14394-14400.
  • Percipalle P., 2007. Genetic connections of the actin cytoskeleton and beyond. Bioessays 29, 407-411.
  • Percipalle P., Zhao J., Pope B., Weeds A., Lindberg U., Daneholt B., 2001. Actin bound to the heterogeneous nuclear ribonucleoprotein hrp36 is associated with Balbiani ring mRNA from the gene to polysomes. J. Cell Biol. 153, 229-236.
  • Percipalle P., Jonsson A., Nashchekin D., Karlsson C., Bergman T., Guialis A., Daneholt B., 2002. Nuclear actin is associated with a specific subset of hnRNP A/B-type proteins. Nucleic Acids Res. 30, 1725-1734.
  • Percipalle P., Fomproix N., Cavellán E., Voit R., Reimer G., Krüger T., Thyberg J., Scheer U., Grummt I., Farrants A. K., 2006. The chromatin remodelling complex WSTF-SNF2h interacts with nuclear myosin 1 and has a role in RNA polymerase I transcription. EMBO Rep. 7, 525-530.
  • Pestic-Dragovich L., Stojiljkovic L., Philimonenko A. A., Nowak G., Ke Y., Settlage R. E., Shabanowitz J., Hunt D. F., Hozak P., de Lanerolle P., 2000. A myosin I isoform in the nucleus. Science 290, 337-341.
  • Philimonenko V. V., Zhao J., Iben S., Dingová H., Kyselá K., Kahle M., Zentgraf H., Hofmann W. A., de Lanerolle P., Hozák P., Grummt I., 2004. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 6, 1165-1172.
  • Plessner M., Melak M., Chinchilla P., Baarlink C., Grosse R., 2015. Nuclear F-actin formation and reorganization upon cell spreading. J. Biol. Chem. 290, 11209-11216.
  • Pollard T. D., Korn E. D., 1973. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J. Biol. Chem. 248, 4682-4690.
  • Pranchevicius M. C., Baqui M. M., Ishikawa-Ankerhold H. C., Lourenco E. V., Leao R. M., Banzi S. R., dos Santos C. T., Barreira M. C., Espreafico E. M., Larson R. E., 2008. Myosin Va phosphorylated on Ser1650 is found in nuclear speckles and redistributes to nucleoli upon inhibition of transcription. Cell Motil. Cytoskeleton 65, 441-456.
  • Qi J., Chi L., Labeit S., Banes A. J., 2008. Nuclear localization of the titin Z1Z2Zr domain and role in regulating cell proliferation. Am. J. Physiol. Cell Physiol. 295, C975-C985.
  • Redowicz M. J., 2001. Regulation of nonmuscle myosins by heavy chain phosphorylation. J. Muscle Res. Cell Motil. 22, 163-173.
  • Rungger D., Rungger-Brändle E., Chaponnier C., Gabbiani G., 1979. Intranuclear injection of anti-actin antibodies into Xenopus oocytes blocks chromosome condensation. Nature 282, 320-321.
  • Sahlas D. J., Milankov K., Park P. C., De Boni U., 1993. Distribution of snRNPs, splicing factor SC-35 and actin in interphase nuclei: immunocytochemical evidence for differential distribution during changes in functional states. J. Cell Sci. 105, 347-357.
  • Saitoh N., Spahr C. S., Patterson S. D., Bubulya P., Neuwald A. F., Spector D. L., 2004. Proteomic analysis of interchromatin granule clusters. Mol. Biol. Cell 15, 3876-3890.
  • Salamon M., Millino C., Raffaello A., Mongillo M., Sandri C., Bean C., Negrisolo E., Pallavicini A., Valle G., Zaccolo M., Schiaffino S., Lanfranchi G., 2003. Human MYO18B, a novel unconventional myosin heavy chain expressed in striated muscles moves into the myonuclei upon differentiation. J. Mol. Biol. 326, 137-149.
  • Salomao M., Zhang X., Yang Y., Lee S., Hartwig J. H., Chasis J. A., Mohandas N., An X., 2008. Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane. Proc. Natl. Acad. Sci. USA 105, 8026-8031.
  • Sarshad A. A., Percipalle P., 2014. New insight into role of myosin motors for activation of RNA polymerases. Int. Rev. Cell Mol. Biol. 311,183-230.
  • Scheer U., Hinssen H., Franke W. W., Jockusch B. M., 1984. Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell 39, 111-122.
  • Schoenenberger C. A., Buchmeier S., Boerries M., Sutterlin R., Aebi U., Jockusch B. M., 2005. Conformation-specific antibodies reveal distinct actin structures in the nucleus and the cytoplasm. J. Struct. Biol. 152, 157-168.
  • Sellers J. R., 1999. Myosins. Oxford University Press, Oxford.
  • Shen X., Ranallo R., Choi E., Wu C., 2003. Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell 12, 147-155.
  • Simon D. N., Zastrow M. S., Wilson K. L., 2010. Direct actin binding to A and B-type lamin tails and actin filament bundling by the lamin A tail. Nucleus 1, 264-272.
  • Skare P., Kreivi J. P., Bergstrom A., Karlsson R., 2003. Profilin I colocalizes with speckles and Cajal bodies: a possible role in premRNA splicing. Exp. Cell Res. 286, 12-21.
  • Skarp K. P., Vartiainen M. K., 2013. Actin as a model for the study of nucleocytoplasmic shuttling and nuclear dynamics. Meth. Mol. Biol. 1042, 245-255.
  • Soderberg E., Hessle V., von Euler A., Visa N., 2012. Profilin is associated with transcriptionally active genes. Nucleus 3, 290-299.
  • Stuven T., Hartmann E., Gorlich D., 2003. Exportin 6: a novel nuclear export receptor that is specific for profilin·actin complexes. EMBO J. 22, 5928-5940.
  • Tang Y., Katuri V., Dillner A., Mishra B., Deng C. X., Mishra L., 2003. Disruption of transforming growth factor-beta signaling in ELF beta-spectrin-deficient mice. Science 299, 574-577.
  • Tani M., Ito J., Nishioka M., Kohno T., Tachibana K., Shiraishi M., Takenoshita S., Yokota J., 2004. Correlation between histone acetylation and expression of the MYO18B gene in human lung cancer cells. Genes Chromosomes Cancer 40, 146-151.
  • Thomas D. G., Yenepalli A., Denais C. M., Rape A., Beach J. R., Wang Y. L., Schiemann W. P., Baskaran H., Lammerding J., Egelhoff T. T., 2015 Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion. J. Cell Biol. 210, 583-594.
  • Trombitas K., Granzier H., 1997. Actin removal from cardiac myocytes shows that near Z line titin attaches to actin while under tension. Am. J. Physiol. 273, C662-C670.
  • Tse W. T., Tang J., Jin O., Korsgren C., John K. M., Kung A. L., Gwynn B., Peters L. L., Lux S. E,. 2001. A new spectrin, beta IV, has a major truncated isoform that associates with promyelocytic leukemia protein nuclear bodies and the nuclear matrix. J. Biol. Chem. 276, 23974-23985.
  • Vartiainen M. K., 2008. Nuclear actin dynamics - from form to function. FEBS Lett. 582, 2033-2040.
  • Vartiainen M. K., Guettler S., Larijani B., Treisman R., 2007. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316, 1749-1752.
  • Vreugde S., Ferrai C., Miluzio A., Hauben E., Marchisio P. C., Crippa M. P., Bussi M., Biffo S., 2006. Nuclear myosin VI enhances RNA polymerase II-dependent transcription. Mol. Cell 23, 749-755.
  • Wada A., Fukuda M., Mishima M., Nishida E., 1998. Nuclear export of actin: a novel mechanism regulating the subcellular localization of a major cytoskeletal protein. EMBO J. 17, 1635-1641.
  • Wagner M. C., Barylko B., Albanesi J. P., 1992. Tissue distribution and subcellular localization of mammalian myosin I. J. Cell Biol. 119, 163-170.
  • Wasik U., Filipek A., 2014. Non-nuclear function of sumoylated proteins. Biochim. Biophys. Acta 1843, 2878-2885.
  • Weston L., Coutts A. S., La Thangue N. B., 2012. Actin nucleators in the nucleus: an emerging theme. J. Cell Sci. 125, 3519-3527.
  • Wollscheid H. P., Biancospino M., He F., Magistrati E., Molteni E., Lupia M., Soffientini P., Rottner K., Cavallaro U., Pozzoli U., Mapelli M., Walters K. J., Polo S., 2016. Diverse functions of myosin VI elucidated by an isoform-specific α-helix domain. Nat. Struct. Mol. Biol. 23, 300-308.
  • Yanaihara N., Nishioka M., Kohno T., Otsuka A., Okamoto A., Ochiai K., Tanaka T., Yokota J., 2004. Reduced expression of MYO18B, a candidate tumor-suppressor gene on chromosome arm 22q, in ovarian cancer. Int. J. Cancer. 112, 150-154.
  • Yarmola E. G., Bubb M. R., 2006. Profilin: emerging concepts and lingering misconceptions. Trends Biochem. Sci. 31, 197-205.
  • Ye J., Zhao J., Hoffmann-Rohrer U., Grummt I., 2008. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev. 22, 322-330.
  • Yoshida H., Cheng W., Hung J., Montell D., Geisbrecht E., Rosen D., Liu J., Naora H., 2004. Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proc. Natl. Acad. Sci. USA 101, 8144-8149.
  • Young K. G., Kothary R., 2005. Spectrin repeat proteins in the nucleus. BioEssays 27, 144-152.
  • Yue J., Wang Q., Lu H., Brenneman M., Fan F., Shen Z., 2009. The cytoskeleton protein filamin-A is required for an efficient recombinational DNA double strand break repair. Cancer Res. 69, 7978-7985.
  • Zastrow M. S., Flaherty D. B., Benian G. M., Wilson K. L., 2006. Nuclear titin interacts with A- and B-type lamins in vitro and in vivo. J. Cell Sci. 119, 239-249.
  • Zhang C., Mallery E. L., Szymanski D. B., 2013. ARP2/3 localization in Arabidopsis leaf pavement cells: a diversity of intracellular pools and cytoskeletal interactions. Front. Plant Sci. 4, 238.
  • Zhang Y. S., Liu B., Luo X. J., Zhang J. J., Li N. S., Ma Q. L., Jiang J. L., Li Y. J., Li Q., Peng J., 2015. A novel function of nuclear nonmuscle myosin regulatory light chain in promotion of xanthine oxidase transcription after myocardial ischemia/reperfusion. Free Radic Biol. Med. 83, 115-128.
  • Zhao K., Wang W., Rando O. J., Xue Y., Swiderek K., Kuo A., Crabtree G. R., 1998. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625-636.
  • Zorca C. E., Kim L. K., Kim Y. J., Krause M. R., Zenklusen D., Spilianakis C. G., Flavell R. A., 2015. Myosin VI regulates gene pairing and transcriptional pause release in T cells. Proc. Natl. Acad. Sci. USA 112, E1587-1593.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv67p75kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.