PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2016 | 65 | 3 | 361-370
Article title

Lipidy w interakcjach z hormonami tarczycy

Content
Title variants
EN
Lipid and thyroid hormone interactions
Languages of publication
PL EN
Abstracts
PL
Relacje między działaniem hormonów tarczycy i związków lipidowych, kwasów tłuszczowych, eikozanoidów i steroli, stanowią ważny element utrzymania homeostazy energetycznej ustroju. Hormony tarczycy wpływają na syntezę i utlenianie kwasów tłuszczowych, syntezę cholesterolu, jego wychwyt i transport odkomórkowy. Tłuszcz diety z kolei, w zależności od ilości i składu, zmienia funkcjonowanie elementów osi podwzgórzowo-przysadkowo-tarczycowej. Jądrowe receptory T3 i czynniki transkrypcyjne wiążące związki o charakterze lipidowym są zaangażowane w regulację ekspresji tych samych genów, wykazują znaczne podobieństwa strukturalne, w tym miejsc wiązania DNA i sekwencji wiążących w DNA. Wszystkie te receptory tworzą heterodimery z receptorami kwasu 9-cis-retinowego, RXR. Występują między nimi zarówno reakcje współdziałania, jak i antagonizmu. Receptor aktywowany przez proliferatory peroksysomalne typu γ wpływa na różnicowanie komórek tarczycy i hamuje procesy zapalne w gruczole.
EN
Relationships between thyroid hormone and lipid compounds: fatty acids, eicosanoid and sterol actions are important for the energy homeostasis. Thyroid hormones affect the fatty acid synthesis and oxidation, cholesterol synthesis and its cellular uptake as well as the reverse transport. In turn, dietary fat in the manner depending on its amount and composition alters the hypothalamus-pituitary-thyroid axis activity. Nuclear thyroid hormone receptors and transcriptional factors binding lipid compounds regulate expression of the same genes, share structural similarities in the DNA binding domains and responsive element. All these receptors form the heterodimers with 9-cis-retinoic acid, RXR. Their interactions include both synergy and antagonism. Proliferator activated receptor type γ stimulates the thyroid cell differentiation and inhibits inflammatory processes in this gland.
Journal
Year
Volume
65
Issue
3
Pages
361-370
Physical description
Dates
published
2016
Contributors
  • Katedra Dietetyki, Wydział Nauk o Żywieniu Człowieka i Konsumpcji, Szkoła Główna Gospodarstwa Wiejskiego, Nowoursynowska 159c, 02-776 Warszawa, Polska
  • Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warszawa, Poland
  • Katedra Dietetyki, Wydział Nauk o Żywieniu Człowieka i Konsumpcji, Szkoła Główna Gospodarstwa Wiejskiego, Nowoursynowska 159c, 02-776 Warszawa, Polska
  • Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warszawa, Poland
  • Katedra Dietetyki, Wydział Nauk o Żywieniu Człowieka i Konsumpcji, Szkoła Główna Gospodarstwa Wiejskiego, Nowoursynowska 159c, 02-776 Warszawa, Polska
  • Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warszawa, Poland
References
  • Agellon L. B., Drover V. A. B., Cheema S. K., Gbaguidi G. F., Walsh A., 2002. Dietary cholesterol fails to stimulate the human cholesterol 7alpha-hydroxylase gene (CYP7A1) in transgenic mice. J. Biol. Chem. 277, 20131-20134.
  • Aiello A., Pandini G., Frasca F., Conte E., Murabito A., Sacco A., Genua M., Vigneri R., Belfiore A., 2006. Peroxisomal proliferator-activated receptor-gamma agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Endocrinology 147, 4463-4475.
  • Antonelli A., Rotondi M., Ferrari S. M., Fallahi P., Romagnani P., Franceschini S. S.,Serio M., Ferrannini M., 2006. Interferon-γ-inducible α-chemokine CXCL10 involvement in Graves' ophtalmopathy: modulation by peroxisome proliferator-activated receptor-γ agonists. J. Clin. Endocrinol. Metab. 91, 614-620.
  • Araki O., Ying H., Furuya F., Zhu X., Heng S., 2005. Thyroid hormone receptor β mutants: dominant negative regulators of peroxisome proliferator - activated receptor γ action. Proc. Natl. Acad. Sci. USA 102, 16251-16256.
  • Araujo R. L., Andrade B. M., Padrón A. S., Gaidhu M. P., Perry R. L., Carvalho D. P., Ceddia R. B., 2010.High-fat diet increases thyrotropin and oxygen consumption without altering circulating 3,5,3'-triiodothyronine (T3) and thyroxine in rats: the role of iodothyronine deiodinases, reverse T3 production, and whole-body fat oxidation. Endocrinology 151, 3460-3469.
  • Bogazzi F., Hudson L.D., Nikodem V.M., 1994. A novel heterodimerization partner for thyroid hormone receptor. Peroxisome proliferator-activated receptor. J. Biol. Chem. 269, 11683-11686.
  • Cheng S. Y., Leonard J. L., Davis P. J., 2010. Molecular aspects of thyroid hormone actions. Endocr. Rev. 31, 139-170.
  • Chu R., Madison L. D., Lin Y., Kopp P., Rao M. S., Jameson J. L., Reddy J. K., 1995. Thyroid hormone (T3) inhibits ciprofibrate-induced transcription of genes encoding beta oxidation enzymes: cross talk between peroxisome proliferator and T3 signalling pathways. Proc. Natl. Acad. Sci. USA 92, 11593-11597.
  • Clandinin M. T., Claerhout D. L., Lien E. L., 1998. Docosahexaenoic acid increases thyroid-stimulating hormone concentration in male and adrenal corticotrophic hormone concentration. J. Nutr. 128, 1257-1261.
  • Desvergne B., Wahli W., 1999.Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649-688.
  • Ellis E. C., 2006. Suppression of bile acid synthesis by thyroid hormone in primary human hepatocytes. World J. Gastroenterol. 12, 4640-4645.
  • Festuccia W. T., Oztezcan S., Laplante M., Berthiaume M., Michel C., Dohgu S., Denis R. G., Brito M. N., Brito N. A., Miller D. S., Banks W. A., Bartness T. J., Richard D., Deshaies Y., 2008. Peroxisome proliferator activated receptor-γ-mediated positive energy balance in the rat is associated with reduced sympathetic drive to adipose tissues and thyroid status. Endocrinology 149, 2121-2130.
  • Flores-Morales A., Gullberg H., Fernandez L., Stahlberg N., Lee N. H., Vennstrom B., Norstedt G., 2002. Patterns of liver gene expression governed by TRbeta. Mol. Endocrinol. 16, 1257-1268.
  • Gauthier K., Billon C., Bissler M., Baylor M., Lobaccaro J. M., Vanacker J. M., Samarut J., 2010. Thyroid hormone receptor β (TRβ) and Liver X receptor (LXR) regulate Carbohydrate-response Element-binding Protein (ChREBP) expression in a tissue-selective manner. J. Biol. Chem. 285, 28156-28163.
  • Ghaddab-Zroud R., Seugnet I., Steffensen K. R., Demeneix D. A., Clerget-Froidevaux S., 2014. Liver X receptor regulation of thyrotropin-releasing hormone transcription in mouse hypothalamus is dependent on thyroid status. PLoS One 9, e106983.
  • Gereben B., Zavacki A.M., Ribich S., Kim B. W., Huang S. A., Simonides W. S., Zeold A., Bianco A. C., 2008. Cellular and molecular basis of deiodinase regulated thyroid hormone signaling. Endocr. Rev. 29, 898-938.
  • Hashimoto K., Yamada M., Matsumoto S., Monden T., Satoh T., Mori M., 2006. Mouse sterol response element binding protein-1c gene expression is negatively regulated by thyroid hormone. Endocrinology 147, 4292-4302.
  • Hashimoto K., Ishida E., Matsumoto S., Okada S., Yamada M., Satoh T., Monden T., Mori M., 2009. Carbohydrate response element binding protein gene expression is positively regulated by thyroid hormone. Endocrinology 150, 3417-3424.
  • Hashimoto K., Matsumoto S., Yamada M., Satoh T., Mori M., 2007. Liver X receptor-α gene expression is positively regulated by thyroid hormone. Endocrinology 148, 4667-4675.
  • Holness M. J., Greenwood G. K., Smith N. D., Sugden M. C., 2008. PPAR activation and increased dietary lipid oppose thyroid hormone signaling and rescue impaired glucose-stimulated insulin secretion in hyperthyroidism. Am. J. Physiol. Endocrinol. Metab. 295, 1380-1389.
  • Hunter J., Kassam A., Winrow C. J., Rachubinski R. A., Capone J. P., 1996. Crosstalk between the thyroid hormone andperoxisome proliferator-activated receptors in regulating peroxisome proliferator-responsive genes. Mol. Cell. Endocrinol. 116, 213-221.
  • Huuskonen J., Vishnu M., Pullinger C. R.., 2004. Regulation of ATP-binding cassette transporter A1 transcription by thyroid hormone receptor. Biochemistry 43, 1626-1632.
  • Ishida E., Hashimoto K., Okada S., Satoh T., Yamada M., Mori M.,2013. Crosstalk between thyroid hormone receptor and liver X receptor in the regulation of selective Alzheimer's disease indicator-1 gene expression. PLoS One 8, e54901.
  • Juge-Aubry C. E., Gorla-Bajszczak A., Pernin A., 1995. Peroxisome proliferator-activated receptor mediates cross-talk with thyroid hormone receptor by competition for retinoid X receptor. Possible role of a leucine zipper-like heptad repeat. J. Biol. Chem. 270, 18117-18122.
  • Kamiya Y., Zhang X. Y., Ying H., Kato Y., Willingham M. C., Xu J., O'malley B. W., Cheng S.Y., 2003. Modulation by steroid receptor coactivator-1 of target tissue responsiveness in resistance to thyroid hormone. Endocrinology 144, 4144-4153.
  • Kasai K., Banba N., Hishinuma A., Matsumura M., Kakishita H., Matsumura M., Motohashi S., Sato N., Hattori Y., 2000. 15-Deoxy-Delta(12,14)-prostaglandin J(2) facilitates thyroglobulin production by cultured human thyrocytes. Am. J. Physiol. Cell Physiol. 279, 1859-1869.
  • Kato Y., Ying H., Zhao L., Furuya F., Araki O., Willingham M. C., Cheng S. Y., 2006. PPARγ insufficiency promotes follicular thyroid carcinogenesis via activation of the nuclear factor-κB signaling pathway. Oncogene 25, 2736-2747.
  • Kawai K., Sasaki S., Morita H., Ito T., Suzuki S., Misawa H., Nakamura H., 2004. Unliganded thyroid hormone receptor-beta1 represses liver X receptor alpha/oxysterol dependent transactivation. Endocrinology 145, 5515-5524.
  • Knight B. L., Herbachi A., Hauton D., Brown A. M., Wiggins D., Patel D. D., Gibbons G. E., 2005. A role for PPARα in the control of SREBP activity and lipid synthesis in the liver. Biochem. J. 389, 413-421.
  • Kouidhi S., Seugnet I., Decherf S., Guissouma H., Elgaaied A. B., Demeneix B., Clerget-Froidevaux M. S., 2010. Peroxisome proliferator - activated receptor-γ (PPAR-γ) modulates hypothalamic Trh regulation in vivo. Mol. Cell Endocrinol. 317, 44-52.
  • Kroll T. G., Sarraf P., Pecciarini L., Chen C. J., Mueller E., Spiegelman B. M., Fletcher J. A., 2000. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma. Science 289, 1357-1360.
  • Lachowicz K., Koszela-Piotrowska I., Rosołowska-Huszcz D., 2009. Dietary fat type and level affect thyroid hormone plasma concentrations in rats. J. Anim. Feed Sci. 18, 541-550
  • Lim C. F., Munro S., Wynne K., Topliss D., Stockigt J., 1995. Influence of nonesterified fatty acids and lysolecithins on thyroxine binding to thyroxine-binding globulin and transthyretin. Thyroid 5, 319-324.
  • Liu Y. Y., Brent G. A., 2010. Thyroid hormone crosstalk with nuclear receptor signaling in metabolic regulation. Trends Endocrinol. Metab. 21, 166-173.
  • Macek Jilkova Z., Pavelka S., Flachs P., Hensler M., Kus V., Kopecky J., 2010. Modulation of type I iodothyronine 5'deiodinase activity in white adipose tissue by nutrition: possible involvement of leptin. Physiol. Res. 59, 561-569.
  • Makino N., Oda N., Miura N., Imamura S., Yamamoto K., Kato T., Fujiwara K., Sawai Y., Iwase K., Nagasaka A., Itoh M., 2001. Effect of eicosapentaenoic acid ethyl ester on hypothyroid function. J. Endocrinol. 171, 259-265.
  • Martelli M. L., Iuliano R., Le Pera I., Sama I., Monaco C., Cammarota S., Kroll T., Chiariotti L., Santoro M., Fusco A., 2002. Inhibitory effects of peroxisome proliferator-activated receptor on thyroid carcinoma cell growth. J. Clin. Endocrinol. Metab. 87, 4728-4735.
  • Miyamoto T., Kaneko A., Kakizawa T., Yajima H., Kamijo K., Sekine R., Hiramatsu K., Nishi Y., Hashimoto T., Hashuzime K., 1997. Inhibition of peroxisome proliferator signaling pathways by thyroid hormone receptor. Competitive binding to the response element. J. Biol. Chem. 272, 7752-7758.
  • Noel-Suberville C., Pallet V., Audouin-Chevallier I., Higueret P., Bonilla S., Martinez A. J., Zulet M. A., Portillo M. P., Garcin H., 1998. Expression of retinoic acid, triiodothyronine, and glucocorticoid hormone nuclear receptors is decreased in the liver of rats fed a hypercholesterolemia-inducing diet.Metabolism 47, 301-308.
  • Pegorier J. P., Le May C., Girard J., 2004. Control of gene expression by fatty acids. J. Nutr 134, 2444-2449.
  • Redonnet A., Groubet R., Noël-Suberville C., Bonilla S., Martinez A., Higueret P., 2001. Exposure to an obesity-inducing diet early affects the pattern of expression of peroxisome proliferator, retinoic acid, and triiodothyronine nuclear receptors in the rat. Metabolism 50, 1161-1167.
  • Rosołowska-Huszcz D., 1998. Wpływ niektórych czynników żywieniowych i wysiłku fizycznego na metabolizm hormonów tarczycy. Wyd SGGW.
  • Rosołowska-Huszcz D., Lachowicz K., 2004. Udział kwasów tłuszczowych w regulacji syntezy białek zaangażowanych w metabolizm energetyczny. [W:] Fizjologiczne uwarunkowania postępowania dietetycznego. Bartnikowska E., Brzozowska A., Gromadzka-Ostrowska J., Narojek L., Rosołowska-Huszcz D. (red.). Wyd. SGGW, 58-66.
  • Shao S., Zhao Y., Song Y., Xu C.H., Yang J.., Xuan S., Yan H., Yu C.H., Zhao M., Xu J., Zhao J., 2014. Dietary high fat lard intake induces thyroid dysfunction and abnormal morphology in rats. Acta Pharmacol. Sin. 35, 1411-1420.
  • Shin D. J., Osborne T. F., 2003. Thyroid hormone regulation and cholesterol metabolism are connected through sterol regulatory element-binding protein-2 (SREBP-2). J. Biol. Chem. 278, 34114-34118.
  • Sotowska B., Rosołowska-Huszcz D., 2004. Influence of dietary cholesterol on thyroid activity depends on dietary fat type in rats fed different fat sources. [W:] Molecular and physiological aspects of regulatory processes of the organism. Materials of the13th International Symposium, Cracow, 439-440.
  • Souza L. L., Nunes M. O., Paula G. S., Cordeiro A., Penha-Pinto V., Neto J. F., Oliveira K. J., Do Carmo M. D., Pazos-Moura C. C., 2010. Effects of dietary fish oil onthyroid hormone signaling in the liver. J. Nutr. Biochem. 21, 935-940.
  • St Germain D. L.,Galton V. A., Hernandez A., 2009. Defining the roles of the iodothyronine deiodinases: current concepts and challenges. Endocrinology 150, 1097-1107.
  • Tamehiro N., Shigemoto-Mogami Y., Kakeya T., 2007. Sterol regulatory element-binding protein-2- and liver X receptor-driven dual promoter regulation of hepatic ABC transporter A1 gene expression. mechanism underlying the unique response to cellular cholesterol status. J. Biol. Chem. 282, 21090-21099.
  • Tancevski I., Wehinger A., Demetz E., Eller P., Duvensee K., Huber J., Hochegger K., Schgoer W., Fievet C., Stellard F., Rudling M., Patsch J. R., Ritsch A., 2008. Reduced plasma high density lipoprotein cholesterol in hyperthyroid mice coincides with decreased hepatic adenosine 5'-triphosphate-binding cassette transporter 1 expression. Endocrinology 149, 3708-3712.
  • Tsushima H., Yamada K., Miyazawa D., Mori M., Hashimoto Y., Ohkubo T., Hibino H., Okuyama H., 2014. Long-termhigh-soybean oil feeding alters regulation of body temperature in rats. Biol. Pharm. Bull . 37, 1003-1013.
  • Williams G. R., Bassett J. H. D., 2011. Deiodinases: the balance of thyroid hormone. Local control of thyroid hormone action: role of type 2 deiodinase. J. Endocrinol. 209, 261-272.
  • Yin L. Zhang Y., Hillgartner F. B., 2002. Sterol regulatory element-binding protein-1 interacts with nuclear thyroid hormone receptor to enhance acetyl-CoA carboxylase alpha transcription in hepatocytes. J. Biol. Chem. 277, 19554-19565.
  • Zhang Y., Yin L., Hillgartner F. B., 2001. Thyroid hormone stimulates acetyl-CoA carboxylase-alpha transcription in hepatocytes by modulating the composition of nuclear receptor complexes bound to a thyroid hormone response element. J. Biol. Chem. 276, 974-983.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv65p361kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.