PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2015 | 64 | 2 | 293-304
Article title

Hiperakumulatory roślinne - charakterystyka, badania i znaczenie praktyczne

Authors
Content
Title variants
EN
Hyperaccumulators - their characteristics, research and practical importance
Languages of publication
PL EN
Abstracts
PL
Zanieczyszczenie pierwiastkami śladowymi (metalami i niemetalami), głównie pochodzenia antropogenicznego, jest poważnym problemem współczesnego świata. Toksyczne ilości pierwiastków w różnych elementach środowiska mogą stanowić zagrożenie przez wiele lat. Z drugiej strony, wciąż wzrasta zapotrzebowanie na metale, szczególnie te wykorzystywane w nowych technologiach, a racjonalne wykorzystanie surowców nieodnawialnych jest obecnie jednym z priorytetów gospodarki ogólnoświatowej. Nowoczesne metody biotechnologiczne wychodzą naprzeciw tym problemom angażując do procesów remediacji i fitoekstrakcji roślinne metalofity. Do tej grupy należą hiperakumulatory, zdolne do pobierania i akumulowania ponadprzeciętnych ilości pierwiastków śladowych. Hiperakumulatory to w większości rośliny endemiczne, występujące zarówno w klimacie tropikalnym, jak i umiarkowanym. Na skuteczność akumulowania przez nie zanieczyszczeń wpływa wiele czynników, np. szybkość przyrostu biomasy. Jednak większość do tej pory opisanych roślin nie spełnia wymogów idealnego hiperakumulatora; część z nich jest zdolna do akumulacji jedynie w specyficznych warunkach, stąd konieczność poszukiwania nowych roślin akumulujących. Prócz procesów fitoremediacji, hiperakumulatory wykorzystywane są także w fitogórnictwie (do pozyskiwania metali) i nanotechnologii (w syntezie nanomateriałów), co czyni je obiektem o szerokich możliwościach aplikacyjnych i badawczych.
EN
Environmental contamination with trace elements (both metals and non-metals), mainly of anthropogenic origin, is one of the most challenging contemporary global problems. Toxic amounts of elements in different environmental compartments may pose a threat for many years. On the other hand, there is an increasing demand for metals, particularly those used in new technologies. A sustainable use of non-renewable resources is one of the priorities of the global economy. Modern biotechnological methods could help to ameliorate these problems through application of metallophytes in the process of phytoremediation and phytoextraction. Hyperaccumulating plants are species showing the highest potential for taking up and storage of abnormal concentrations of trace elements in their green parts. Hyperaccumulators are mostly endemic plants, occurring both in tropical and temperate climate zones. Their efficiency for accumulation of trace elements is affected by many factors such as the rate of biomass production. However, most of the known hyperaccumulators do not meet the criteria of an ideal hyperaccumulator, some of the species are able to show accumulative properties only under specific conditions. There is a need to find new accumulating plant species. Aside from their application in phytoremediation, hyperaccumulators are also used in phytomining (as a source of metals of economic value) and in nanotechnology (in synthesis of nanomaterials). These features make hyperaccumulators very interesting subject of basic and applied research.
Keywords
Journal
Year
Volume
64
Issue
2
Pages
293-304
Physical description
Dates
published
2015
References
  • Alford E. R., Pilon-Smits E. A. H., Paschke M. W., 2010. Metallophytes - a view from the rhizosphere. Plant Soil 337, 33-50.
  • Ali H., Khan E., Sajad M. A., 2013. Phytoremediation of heavy metals - Concepts and applications. Chemosphere 91, 869-881.
  • Alves S., Nabais C., De Lurdes Simões Goncalves M., Correia Dos Santos M. M., 2011. Nickel speciation in the xylem sap of the hyperaccumulator Alyssum serpyllifolium ssp. lusitanicum growing on serpentine soils of northeast Portugal. J. Plant Physiol. 168, 1715-1722.
  • Anderson C., Deram A., Petit D., Brooks R. R., Stewart R. Simcock R., 2001. Induced hyperaccumulation: metal movement and problems. [W:] Trace Elements in Soils: Bioavailability, Flux and Transfer. Iskandar I. K., Kirkham M. B. (red.). CRC Press, Boca Raton, Florida, 63-76.
  • Baker A. J. M., Brooks R. R., 1989. Terrestrial higher plants which hyperaccumulate metalic elements - A review of their distribution, ecology and phytochemistry. Biorecovery 1, 81-126.
  • Baker A. J. M., Ernst W. H. O., Van Der Ent A., Malaisse F., Ginocchio R., 2010. Metallophytes: the unique biological resource, its ecology and conservational status in Europe, central Africa and Latin America. [W:] Ecology of industrial pollution. Batty L. C., Hallberg K. B. (red.). Cambridge University Press, Cambridge, 7-40.
  • Baker A. J. M., McGrath S. P., Reeves R. D., Smith J. A. C., 2000. Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. [W:] Phytoremediation of Contaminated Soil and Water. Terry N., Banuelos G. (red.). Lewis Publisher, Boca Raton, FL, USA.
  • Baldwin P. R., Butcher D. J., 2007. Phytoremediation of arsenic by two hyperaccumulators in a hydroponic environment. Microchem. J. 85, 297-300.
  • Bayramoglu G., Arica M. Y., Adiguzel N., 2012. Removal of Ni(II) and Cu(II) ions using native and acid treated Ni-hyperaccumulator plant Alyssum discolor from Turkish serpentine soil. Chemosphere 89, 302-309.
  • Bech J., Poschenrieder C., Barceló J., Lansac A., 2002. Plants from mine spoils in the South American Area as a potential source of germplasm for phytoremediation technologies. Acta Biotechnol. 22, 5-11.
  • Bhargava A., Carmona F. F, Bhargava M, Srivastava S., 2012. Approaches for enhanced phytoextraction of heavy metals. J. Environ. Manage. 105, 103-120.
  • Bhatia P., Bhatia N. P., Ashwath N., 2002. In vitro propagation of Stackhousia tryonii Bailey (Stackhousiaceae): a rare and serpentine-endemic species of central Queensland, Australia. Biodiver. Conservat. 11, 1469-1477.
  • Bolan N., Kunhikrishnan A., Thangarajan R., Kumpiene J., Park J., Makino T., Kirkham M. B., Scheckel K., 2014. Remediation of heavy metal(loid)s contaminated soils - To mobilize or to immobilize? J. Hazard. Mat. 266, 141-166.
  • Boyd R. S., 2007. The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293, 153-176.
  • Brooks R. R., 1987. Serpentine and its vegetation: a multidisciplinary approach. Dioscorides Press, Portland, Oregon, USA.
  • Brooks R. R., Lee J., Reeves R. D., Jaffrre T., 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explorat. 7, 49-57.
  • Brooks R. R., Chambers M. F., Nicks L. J., Robinson B. H., 1998. Phytomining. Perspectives 3, 359-362.
  • Chander K., Joergensen R. G., 2008. Decomposition of Zn-rich Arabidopsis halleri litter in low and high metal soil in the presence and absence of EDTA. Water Air Soil Pollut. 188, 195-204.
  • Chaney R. L., Malik M., Li Y. M., Brown S. L., Brewer E. P., Angle J. S., Baker A. J. M., 1997. Phytoremediation of soil metals. Curr. Opin. Biotechnol. 8, 279-284.
  • Clemens S., 2006. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88, 1707-1719.
  • Chaney R. L., Angle J. S., Broadhurst C. L., Peters C. A., Tappero R. V., Sparks D. L., 2007. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J. Environ. Qual. 36, 1429-1443.
  • Dahmani-Muller H., Van Oort F., Gélie B., Balabane M., 2000. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ. Pollut. 109, 231-238.
  • Fränzle O., 2006. Complex bioindication and environmental stress assessment. Ecol. Indicat. 6, 114-136.
  • Galardi F., Mengoni A., Pucci S., Barlettid L., Massi L., Barzanti R., Arnetoli M., Gabbrielli R., Gonnelli C., 2007. Intra-specific differences in mineral element composition in the Ni-hyperaccumulator Alyssum bertolonii: A survey of populations in nature. Environ. Exp. Bota. 60, 50-56.
  • Gałuszka A., 2005. Wykorzystanie mikroorganizmów i roślin do pozyskiwania metali. Przegląd Geologiczny 53, 858-862.
  • Ghaderian S. M., Mohtadi A., Rahiminejad R., Reeves R. D., Baker A. J. M., 2007. Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran. Plant Soil 293, 91-97.
  • Hem J. D., 1992. Study and interpretation of the chemical characteristics of natural water. U.S. Geological Survey Water-Supply Paper 254, 263.
  • Hooda P., 2010. Trace Elements in soils. A John Wiley and Sons, Ltd. New York.
  • Jaffré T., Brooks R. R., Lee J., Reeves R. D., 1976. Sebertia acuminata: a nickel-accumulating plant from New Caledonia. Science 193, 579-580.
  • Kotrba P., Najmanova J., Macek T., Ruml T., Mackova M., 2009. Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol. Adv. 27, 799-810.
  • Krämer U., Grime G. W., Smith J. A. C., Hawes C. R., Baker A. J. M., 1997. Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl. Instr. Meth. Physics Res. B 130, 346-350.
  • Krämer U., Talke I. N., Hanikenne N., 2007. Transition metal transport. FEBS Lett. 581, 2263-2272.
  • Krzciuk K., Gałuszka A., 2014. Prospecting for hyperaccumulators of trace elements: a review. Crit. Rev. Biotechnol. DOI:10.3109/07388551.2014.922525.
  • Li G., Hu N., Ding D., Zheng J., Liu Y., Wang Y., Nie X., 2011. Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China. Bull. Environ. Contamin. Toxicol. 86, 646-652.
  • Liu X., Gao Y. S. K., Duan G., Chen A., Ling L., Zhao L., Liu Z., Wu X., 2009. Accumulation of Pb, Cu, and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan. J. Environ. Sci. 20, 1469-1474.
  • Lotfy S. M., Mostafa A. Z., 2013. Phytoremediation of contaminated soil with cobalt and chromium. J. Geochem. Explor. DOI:10.1016/j.gexplo.2013.07.003.
  • Maestri E., Marmiroli M., Visioli G., Marmiroli N., 2010. Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environ. Exp. Botan. 68, 1-13.
  • McGrath S. P., Zhao F. J., 2003. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 14, 277-282.
  • Meers E., Slycken S. V., Adriaensen K., Ruttens A., Vangronsveld J., Laing G. D., Witters N., Thewys T., Tack F. M. G., 2010. The use of bio-energy crops (Zea mays) for 'phytoremediation' of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78, 35-41.
  • Morrison R. S., Brooks R. R., Reeves R. D., Malaisse F., 1979. Copper and cobalt uptake by metallophytes from Zaïre. Plant Soil 53, 535-539.
  • Muhammad I., Puschenreiter M., Wenzel W. W., 2012. Cadmium and Zn availability as affected by pH manipulation and its assessment by soil extraction, DGT and indicator plants. Sci. Total Environ. 416, 490-500.
  • Orchard C., León-Lobos P., Ginocchio R., 2009. Phytostabilization of massive mine wastes with native phytogenetic resources: potential for sustainable use and conservation of the native flora in North-Central Chile. Ciencia e Investigación Agraria 36, 329-352.
  • Ozturk L., Karanlik S., Ozkutlu F., Cakmak I., Kochian L. V., 2003. Shoot biomass and zinc/cadmium uptake for hyperaccumulator and non-accumulator Thlaspi species in response to growth on a zinc deficient calcareous soil. Plant Sci. 164, 1095-1101.
  • Prasad M. N. V., 2005. Nickelophilous plants and their significance in phytotechnologies. Braz. J. Plant Physiol. 17, 113-128.
  • Qu J., Luo C., Cong Q., Yuan X, 2012. Carbon nanotubes and Cu-Zn nanoparticles synthesis using hyperaccumulator plants. Environ. Chem. Lett. 10, 153-158.
  • Rabęda I., Woźny A., Krzesłowska M., 2011. Bakterie i grzyby mikoryzowe zwiększają wydajność roślin w fitoremediacji metali śladowych. Kosmos 60, 423-433.
  • Rascio N., Navari-Izzo F., 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 180, 169-181.
  • Reeves R. D., 1992. Hyperaccumulation of nickel by serpentine plants. [W:] The Vegetation of Ultramafic (Serpentine) Soils. Baker A. J. M., Proctor J., Reeves R. D. (red.). Intercept Ltd., Andover, UK, 253-277.
  • Robinson B. H., Kim N., Marchetti M., Moni C., Schroeter L., Vanden Dijssel C., Milne G., Clothier B., 2006. Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ. Exp. Botan. 58, 206-215.
  • Shallari S., Schwartz C., Hasko A., Morcl J. L., 1998. Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci. Total Environ. 209, 133-142.
  • Shan Q., Liu X., Zhang J., Chen G., Liu S., Zhang P., Wang Y., 2011. Analysis on the tolerance of four ecotype plants against copper stress in soil. Proc. Environ. Sci. 10, 1802-1810.
  • Shen Z. G, Liu Y. L., 1998. Progress in the study on the plants that hyperaccumulate heavy metal. Plant Physiol. Communicat. 34, 133-139.
  • Siwek M., 2008a. Rośliny w skażonym metalami ciężkimi środowisku poprzemysłowym. Część I. Pobieranie, transport i toksyczność metali ciężkich (śladowych). Wiadomości Botaniczne 52, 7-22.
  • Siwek M., 2008b. Rośliny w skażonym metalami ciężkimi środowisku poprzemysłowym. Część II. Mechanizmy detoksyfikacji i strategie przystosowania roślin do wysokich stężeń metali ciężkich. Wiadomości Botaniczne 52, 7-23.
  • Sun Y.-B., Zhou Q.-X., An J., Liu W.-T., Liu R., 2009. Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma 150, 106-112.
  • Van Der Ent A., Baker A. J. M., Reeves R. D., Pollard A. J., Schat H., 2013. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362, 319-334.
  • Vithanage M., Dabrowska B. B., Mukherjee A. B., Sandhi A., Bhattacharya P., 2012. Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environ. Chem. Lett. 10, 217-224.
  • Wang M., Zou J., Duan X., Jiang W., Liu D., 2007. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Biores. Technol. 98, 82-88.
  • Wang Y., Yan A., Dai J., Wang N. N., Wu D., 2012. Accumulation and tolerance characteristics of cadmium in Chlorophytum comosum: a popular ornamental plant and potential Cd hyperaccumulator. Environ. Monitor. Asses. 184, 929-937.
  • Wei S., Zhou Q., Saha U. K., 2008. Hyperaccumulative characteristics of weed species to heavy metals. Water Air Soil Pollut. 192, 173-181.
  • Wei S., Niu R., Srivastava M., Zhou Q., Wu Z., Sun T., Hu Y., Li Y., 2009. Bidens tripartite L.: A Cd-accumulator confirmed by pot culture and site sampling experiment. J. Hazard. Mat. 170, 1269-1272.
  • Wenzel W. W., Jockwer F., 1999. Accumulation of heavy metals in plants grown on mineralised soils of the Austrian Alps. Environ. Pollut. 104, 145-155.
  • Wójcik M., 2000. Fitoremediacja - sposób oczyszczania środowiska. Kosmos 49, 135-147.
  • Xiong J., He Z., Liu D., Mahmood Q., Yang X., 2008. The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium. Chemosphere 70, 489-494.
  • Xue S. G., Chen Y. X., Reeves R. D, Baker A. J. M., Lin Q., Fernando D. R., 2004. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ. Pollut. 131, 393-399.
  • Zhuang P., Yang Q. W., Wang H. B., Shu W. S., 2007. Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut. 184, 235-242.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv64p293kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.