Preferences help
enabled [disable] Abstract
Number of results
2005 | 54 | 2-3 | 133-148
Article title

Zależna od ubikwityny degradacja białek Nagroda Nobla z chemii w 2004 roku

Title variants
Nobel Prize in chemistry in 2004 for ubiquitin-dependent protein degradation
Languages of publication
In the article Nobel laureates in chemistry for 2004 - Irvine Rose, Avram Hershko and Aron Ciechanover - and their achievements in elucidating the ubiquitin-mediated protein degradation are presented and the function of ubiquitin in this process is shortly reviewed. Moreover, ubiquitin ligases involved in the ubiquitylation of the main cell cycle regulators as well as the mechanisms regulated by their activities are described. Examples of the abnormalities of functioning of the ubiquitin/proteasome system in various diseases and possibilities of pharmacological intervension in its action are also presented.
Physical description
  • Zakład Biochemii Komórki Instytut Biologii Doświadczalnej im. M. Nenckiego, PAN, Pasteura 3, 02-093 Warszawa, Polska
  • AGNER J., FALCK J., LUKAS J., BARTEK J., 2005. Differential impact of diverse anticancer chemotherapeutics on the Cdc25A-degradation checkpoint pathway. Exp. Cell Res. 302, 162-169.
  • BASHIR T., DORRELLO N. V., AMADOR V., GUARDAVACCARO D., PAGANO M., 2004. Control of the SCFSkp2Cks1 ubiquitin ligase by the APC/CCdh1 ubiquitin ligase. Nature 428, 190-193.
  • BELLOWS D. S., TYERS M., 2004. Chemical genetics hits 'reality'. Science 306, 67-68.
  • BORNSTEIN G., BLOOM J., SITRY-SHEVAH D., NAKAYAMA K., PAGANO M., HERSHKO A., 2003. Role of the Skp2 ubiquitin ligase in the degradation of Cip1 in S phase. J. Biol. Chem. 278, 25752-25757.
  • BUSINO L., CHIESA M., DRAETTA G. F., DONZELLI M., 2004. Cdc25 phosphatase: combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene 23, 2050-2056.
  • BUTZ N., REUTZ S., ATT F., HALL J., WEILER J., MESTAN J., DUCARRE M., GROSSENBACHER R., HAUSER P., KEMPF D., HOFMANN F., 2005. The human ubiquitin-conjugating enzyme Cdc34 controls cellular proliferation through regulation of p27Kip1 protein levels. Exp. Cell Res. 303, 482-493.
  • CARDOZO T., PAGANO M., 2004. The SCF ubiquitin ligase: insights into a molecular machine. Nature Rev. Mol. Cell Biol. 5, 739-751.
  • CARRARD G., BULTEAU A. L., PETROPOULOS I., FRIGUET B., 2002. Impairment of proteasome structure and function in aging. Int. J. Biochem. Cell Biol. 34, 1461-1474.
  • CHUNG C. H., BAEK S. H., 1999. Deubiquitinating enzymes: their diversity and emerging roles. Biochem. Biophys. Res. Commun. 266, 633-640.
  • CIECHANOVER A., IWAI K., 2004. The ubiquitin-system: from basic mechanisms to the patient bed. IUBMB Life 56, 193-201.
  • CIECHANOVER A., SCHWARTZ A. L., 2004. The ubiquitin system: pathogenesis of human diseases and drug targeting. Biochim. Biophys. Acta 1695, 3-17.
  • CIECHANOVER A., ORIAN A., SCHWARTZ A. L., 2000. Ubiquitin-mediated proteolysis: biological regulation via destruction. BioEssays 22, 442-451.
  • CRAIG K. L., TYERS M., 1999. The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog. Biophys. Mol. Biol. 72, 299-328.
  • DEBIGARE R., PRICE S. R., 2003. Proteolysis, the ubiquitin-proteasome system, and renal diseases. Am. J. Physiol. Renal Physiol. 285, F1-8.
  • DONZELLI M., DRAETTA G. F., 2003. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 4, 671-677.
  • DONZELLI M., SQUATRITO M., GANOTH D., HERSHKO A., PAGANO M., DRAETTA G. F., 2002. Dual mode of degradation of Cdc25A phosphatase. EMBO J. 21, 4875-4884.
  • FANG S., LORICK K. L., JENSEN J. P., WEISSMAN A. M., 2003. RING finger ubiquitin protein ligases: implications for tumorigenesis, metastasis and for molecular targets in cancer. Semin. Cancer Biol. 13, 5-14.
  • FENTEANY G., SCHREIBER S. L., 1998. Lactacystin, proteasome function, and cell fate. J. Biol. Chem. 273, 8545-8548.
  • FERRINGTON D. A., KAPPHAHN R. J., 2004. Catalytic site-specific inhibition of the 20S proteasome by 4-hydroxynonenal. FEBS Lett. 578, 217-223.
  • FINLEY D., CIECHANOVER A., VARSHAVSKY A., 2004. Ubiquitin as a central cellular regulator. Cell S116, S29-S32.
  • FÖRSTER A., HILL C. P., 2003. Proteasome degradation: enter the substrate. Trends Cell Biol. 13, 550-553.
  • GLOTZER M., MURRAY A. W., KIRSCHER M. W., 1991. Cyclin is degraded by the ubiquitin pathway. Nature 349, 132-138.
  • GRZELAKOWSKA-SZTABERT B., 1993. Degradacja cyklin jako niezbędny element regulacyjny cyklu komórkowego. Post. Biochem. 39, 16-25.
  • GRZELAKOWSKA-SZTABERT B., 1995. Regulacja cyklu komórkowego - udział białkowych inhibitorów kinaz cyklino-zależnych. Post. Biochem. 41, 81-93.
  • GRZELAKOWSKA-SZTABERT B., 2002a. Proteoliza białek regulujących przebieg cyklu komórkowego - udział ubikwitynacji. Post. Biochem. 48, 34-47.
  • GRZELAKOWSKA-SZTABERT B., 2002b. Punkty kontrolne cyklu komórkowego, czy znamy ich molekularne podłoże? Post. Biol. Kom. 29, 157-175.
  • GRZELAKOWSKA-SZTABERT B., 2004. Oligo- i monomeryczne ligazy ubikwitynowe E3 z domeną RING finger - budowa i działanie. Post. Biol. Kom. 31, 373-392.
  • GUARDAVACCARO D., PAGANO M., 2004. Oncogenic aberrations of cullin-dependent ubiquitin ligases. Oncogene 23, 2037-2049.
  • GUTERMAN A., GLICKMAN M. H., 2004. Deubiquitinating enzymes are IN/(trinsic to proteasome function). Curr. Protein Pept. Sci. 5, 201-211.
  • HAGLUND K., DI FIORE P. P., DIKIC I., 2003. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28, 598-603.
  • HAGTING A., DEN ELZEN N., VODERMAIER H. C., WAIZENEGGER I. C., PETERS J. M., PINES J., 2002. Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. J. Cell Biol. 157, 1125-1137.
  • HARTMANN-PETERSEN R., GORDON C., 2004. Protein degradation: recognition of ubiquitinylated substrates. Curr. Biol. 14, R754-R756.
  • HASSELGREN P.O., WRAY C., MAMMEN J., 2002. Molecular regulation of muscle cachexia: it may be more than the proteasome. Biochem. Biophys. Res. Commun. 290, 1-10.
  • HERSHKO A., CIECHANOVER A., HELLER H., HAAS A. L., ROSE I. P., 1980. Proposed role of ATP in protein breakdown: conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis. Proc. Natl. Acad. Sci. USA 77, 1783-1786.
  • HERSHKO A., CIECHANOVER A.., VARSHAVSKY A., 2000. The ubiquitin system. Nature Med. 6, 1073-1081.
  • HENGST L., 2004. A second RING to destroy p27Kip1. Nature Cell Biol. 6 1153-1155.
  • HORNIG N., KNOWLES P. P., MCDONALD N., UHLMANN F., 2002. The dual mechanism of separase regulation by securin. Curr. Biol. 12, 973-982.
  • JACKSON P. K., 2004. Linking tumor suppression, DNA damage at the anaphase-promoting complex. Trends Cell Biol. 14, 331-334.
  • KAMURA T., HARA T., MATSUMOTO M., ISHIDA N., OKUMURA F., HATAKEYAMA S., YOSHIDA M., NAKAYAMA K., NAKAYAMA K. I., 2004. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27Kip1 at G1 phase. Nat. Cell Biol. 6, 1229-1235.
  • KANG D., CHEN J., WONG J., FANG G., 2002. The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition. J. Cell Biol. 156, 249-259.
  • KAWAKAMI T., CHIBA T., SUZUKI T., IWAI K., YAMANAKA K., MINATO N., SUZUKI H., SHIMBARA N., HIDAKA Y., OSAKA F., OMATA M., TANAKA K., 2001. NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J. 20, 4003-4012.
  • KREK W., 2003. BTB proteins as henchmen of Cul3based ubiquitin ligases. Nature Cell Biol. 5, 950-951.
  • LEE D. H., GOLDBERG A. L., 1998. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8, 397-403.
  • LIU J., FURUKAWA M., MATSUMOTO T., XIONG Y., 2002. NEDD8 modification of CUL1 dissociates CAND1, an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol. Cell 10, 1511-1518.
  • MADURA K., 2004. Rad23 and Rpn10: perennial wallflowers join the mêlée. Trends Biochem. Sci. 29, 637-640.
  • MANTEUFFEL-CYMBOROWSKA M., 1996. Dekarboksylaza ornitynowa jedynym nieubikwitynowanym białkiem degradowanym przez 26S proteasomy? Post. Biochem. 42, 113-119.
  • MIZUNO K., OSADA H., KONISHI H., TATEMATSU Y., YATABE Y., MITSUDOMI T., FUJII Y., TAKAHASHI T., 2002. Aberrant hypermethylation of the CHFR prophase checkpoint gene in human lung cancers. Oncogene 21, 2328-2333.
  • MOSHE Y., BOULAIRE J., PAGANO M., HERSHKO A., 2004. Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc. Nat. Acad. Sci. USA 101, 7937-7942.
  • NASH P., TANG X., ORLICKY S., CHEN Q., GERTIER F.B., MENDENHALL M. D., SICHERI F., PAWSON T., TYERS M., 2001. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514-521.
  • NASMYTH K., 1999. Separating sister chromatids. Trends Biochem. Sci. 24, 98-104.
  • NASMYTH K., PETERS J. M., UHLMANN F., 2000. Splitting the chromosome: cutting the ties that bind sister chromatid. Science 288, 1379-1385.
  • OHTA T., FUKUDA M., 2004. Ubiquitin and breast cancer. Oncogene 23, 2079-2088.
  • OYAKE D., NISHIKAWA H., KOIZUKA I., FUKUDA M., OHTA T., 2002. Targeted substrate degradation by an engineered double RING ubiquitin ligase. Biochem. Biophys. Res. Commun. 295, 370-375.
  • PAGE A. M., HIETER P., 1999. The anaphase-promoting complex: new subunits and regulators. Annu. Rev. Biochem. 68, 583-609.
  • PAN Z. Q., KENTSIS A., DIAS D. C., YAMOAH K., WU K., 2004. Nedd8 on cullin: building an expressway to protein destruction. Oncogene 23, 1985-1997.
  • PETROSKI M. D., DESHAIES R. J., 2005. Function and regulation of cullin-ring ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9-20.
  • Pfleger C. M., Kirschner M. W., 2000. The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 14, 655-665.
  • PFLEGER C. M., LEE E., KIRSCHNER M. W., 2001. Substrate recognition by the Cdc20 and Cdh1 components of the anaphase-promoting complex.. Genes Dev. 15, 2396-2407.
  • PICKART C. M., 2001. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503-533.
  • PICKART C. M., COHEN R. E., 2004. Proteasomes and their kin: proteases in the machine age. Nat. Rev. Mol. Cell 5, 177-187.
  • PIOTROWSKA U., 1993. Struktura i funkcja ubikwityny. Post. Biochem. 39, 8-16.
  • PIVA R., CHIARLE R., PODDA A., PAGANO M., INGHIRAMI G., 2002. In vivo interference with Skp1 function leads to genetic instability and neoplastic transformation. Mol. Cell. Biol. 22, 8375-8387.
  • PRAY T. R., PARLATI F., HUANG J., WONG B. R., PAYAN D. G., BENNETT M. K., ISSAKANI S. D., MOLINEUX S., DEMO S. D., 2002. Cell cycle regulatory E3 ubiqui tin ligases as anticancer targets. Drug Resist. Updat. 5, 249-258.
  • RICHARDSON P., 2003. Clinical update: proteasome inhibitors in hematologic malignancies. Cancer Treat. Rev. 29, 33-39.
  • ROSS C. A., PICKART C. M., 2004. The ubiquitin-pro-teasome pathway in Parkinson's disease and other neurodegenerative diseases. Trends Cell Biol. 14, 703-711.
  • SAKAMOTO K. M., KIM K. B., VERMA R., RANSICK A., STEIN B., CREWS C. M., DESHAIES J. R., 2003. Development of protact to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteomics 2.12, 1350-1358.
  • SCHNELL J. D., HICKE L., 2003. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J. Biol. Chem. 278, 35857-35860.
  • SCHWARTZ D. C., HOCHSTRASSER M., 2003. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends Biochem. Sci. 8, 321-328.
  • SCHWECHHEIMER C., 2004. The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development. Biochim. Biophys. Acta 1695, 45-54.
  • SHCHERBIK N., HAINES D. S., 2004. Ub on the move. J. Cell. Biochem. 93, 11-19.
  • STEMMANN O., ZOU H., GERBER S. A., GYGI S. P., KIRSCHNER M. W., 2001. Dual inhibition of sister chromatid separation at metaphase. Cell 107, 715-726.
  • SUN Y., 2003. Targeting E3 ubiquitin ligases for cancer therapy. Cancer Biol. Ther. 2, 623-629.
  • SUN L., CHEN Z. J., 2004. The novel functions of ubiqui tination in signaling. Curr. Opin. Cell Biol. 16, 119-126.
  • SUN X. M., BUTTERWORTH M., MAC FARLANE M., DUBIEL W., CIECHANOVER A., COHEN G. M., 2004. Caspase activation inhibits proteasome function during apoptosis. Mol. Cell 14, 81-93.
  • TOUITOU R., RICHARDSON J., BOSE S., NAKANISHI M., RIVETT J., ALLDAY M. J., 2001. A degradation signal located in the C-terminus of p21WAF1/CIP1 is binding site for the C8 alpha-subunit of the 20S proteasome. EMBO J. 20, 2367-2375.
  • VARSHAVSKY A., 1996. The N-end rule: functions, mysteries, uses. Proc. Natl. Acad. Sci. USA 93, 12142-12149.
  • VASSILEV L. T., VU B. T., GRAVES B., CARVAJAL D., PODLASKI F., FILIPOVIC Z., KONG N., KAMMLOTT U., LUKACS C., KLEIN C., FOTOUHI N., LIU E. A., 2004. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844-848.
  • VERMA R., ARAVIND L., OANIA R., MCDONALD W. H., YATES J. R. 3RD, KOONIN E. V., DESHAIRE R. J., 2002. Role of Rpn 11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611-615.
  • VERMA R., OANIA R., GRAUMANN J., DESHAIES R. J., 2004a. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118, 99-110.
  • VERMA R., PETERS N. R., D'ONOFRIO M., TOCHTROP G. P., SAKAMOTO K. M., VARADAN R., ZHANG M., COFFINO P., FUSHMAN D., DESHAIES R. J., KING R. W., 2004b. Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science 306, 117-120.
  • VEW P. R., 2001. Ubiquitin-mediated proteolysis of vertebrate G1- and S-phase regulators. J. Cell Physiol. 187, 1-10.
  • VODERMAIER H. C., 2004. APC/C and SCF: controlling each other and the cell cycle. Curr. Biol. 14, R787-R796.
  • VOGES D., ZWICKL P., BAUMEISTER W., 1999. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015-1068.
  • VOORHEES P. M., DEES E. C., O'NEIL B., ORLOWSKI R. Z., 2003. The proteasome as a target for cancer therapy. Clin. Cancer Res. 9, 6316-6325.
  • WAIZENEGGER I. C., GIMÉNEZ-ABIÁN J. F., WERNICK D., PETERS J. M., 2002. Regulation of human separase by securin binding and autocleavage. Curr. Biol. 12, 1368-1378.
  • WEI W., AYAD N. G., WAN Y., ZHANG G. J., KIRSCHNER M. W., KAELIN W. G., Jr, 2004. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428, 194-198.
  • WEISSMAN A. M., 2001. Themes and variations on ubiquitylation. Nature Rev. Mol. Cell Biol. 2, 169-178.
  • WENGER R. H., 2002. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J. 16, 1151-1162.
  • WILKINSON K. D., 2004. Ubiquitin: a Nobel protein. Cell 119, 741-745.
  • WING S. S., 2003. Deubiquitinating enzymes - the importance of driving in reverse along the ubiquitin-proteasome pathway. Int. J. Biochem. Cell Biol. 35, 590-605.
  • WÓJCIK C., 1995. Proteasomy i szlak degradacji białek zależny od ubikwityny. Post. Biol. Kom. 22, 295-315.
  • YAMANO H., GANNON J., MAHBUBANI H., HUNT T., 2004. Cell cycle-regulated recognition of the destruction box of cyclin B by the APC/C in Xenopus egg extracts. Mol. Cell 13, 137-147.
  • ZWICKL P., SEEMULLER E., KAPELARI B., BAUMEISTER W., 2001. The proteasome: a supramolecular assembly designed for controlled proteolysis. Adv. Protein Chem. 59, 87-222.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.