EN
In this study the technique of Laplace transform (high resolution) deep level transient spectroscopy combined with the uniaxial stress method has been used to study a symmetry and the defect reconfiguration kinetics (the stress induced alignment) of some forms of hydrogen-related centres. We have confirmed the trigonal symmetry of the defect related to the isolated bond centred hydrogen. When hydrogen decorates the vacancy-oxygen pair (the A centre) the apparent defect orthorhombic symmetry is not lowered as a result of a very high hydrogen jumping rate between two unsaturated broken bonds of the vacancy. We also show that the stress-induced defect alignment in some cases can be related to the same microscopic mechanism of the hydrogen motion as it is for the diffusion process.