Title variants
Languages of publication
Abstracts
Hydroxyapatite is very-well known as the main component of hard tissues and, as such, it has attracted much attention by researchers in the recent decades. This study was aimed to present the characterization of Y₂O₃ doped 50 wt.% hydroxyapatite - 50 wt.% Al₂O₃ composite materials fabricated at relatively high temperature of 1600°C. Hydroxyapatite powder was obtained from bovine bones via calcination and ball milling technique. Fine powders ( ≤ 1 μm) of hydroxyapatite/Al₂O₃ were admixed with 0.5 and 1 wt.% Y₂O₃ powders. Powder compacts were sintered at 1600°C for 4 h in air atmosphere. The field emission scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffraction studies following the relative density measurements were conducted. Moreover, the microhardness was studied as the mechanical property of sintered samples. The effect of increasing Y₂O₃ content on surface morphology, elemental distribution and phase evaluation was investigated in hydroxyapatite/Al₂O₃ biocomposite materials. It was found that by increasing Y₂O₃ content, the relative density increased up to 98.8%, while the hardness increased to 863 HV_{(0.2)}. The main phases, which were found, are Hibonite - CaO(Al₂O₃)₆ and beta-tricalcium phosphate - Ca₃(PO₄)₂, according to X-ray diffraction pattern.
Discipline
- 88.30.mj: Composite materials
- 87.85.Lf: Tissue engineering
- 81.07.-b: Nanoscale materials and structures: fabrication and characterization(for structure of nanoscale materials, see 61.46.-w; for nanostructured materials in electrochemistry, see 82.45.Yz; see also 62.23.-c Structural classes of nanoscale systems in mechanical properties of condensed matter)
- 87.85.J-: Biomaterials
- 87.85.jj: Biocompatibility
Journal
Year
Volume
Issue
Pages
576-579
Physical description
Dates
published
2017-03
References
- [1] P.V. Giannoudis, H. Dinopoulos, E. Tsiridis, Injury 36, 20 (2005), doi: 10.1016/j.injury.2005.07.029
- [2] X. Li, L. Wang, Y. Fan, Q. Feng, F.Z. Cui, F. Watari, J. Biomed. Mater. Res. 101, 2424 (2013), doi: 10.1002/jbm.a.34539
- [3] J.H.G. Rocha, A.F. Lemos, S. Agathopoulos, P. Valèrio, S. Kannan, F.N. Oktar, J.M.F. Ferreira, Bone 37, 850 (2005), doi: 10.1016/j.bone.2005.06.018
- [4] M. Jarcho, Clin. Orthop. Relat. Res. 157, 259 (1981)
- [5] K. De Groot, C.P.A Klein, J.G.C Wolke, J.M.A. De Blieck-Hogervorst, Handbook of bioactive ceramics, vol. 2, CRC Press, Boca Raton 1990
- [6] L. Hong, H.C. Xu, K. De Groot, J. Biomed. Mater. Res. 26, 7 (1992), doi: 10.1002/jbm.820260103
- [7] J.T. Edwards, J.B. Brunski, H.W. Higuchi, J. Biomed. Mater. Res. 36, 454 (1997), doi: 10.1002/(SICI)1097-4636(19970915)36:4<454::AID-JBM3>3.0.CO;2-D
- [8] G. Goller, F.N. Oktar, Mater. Lett. 56, 142 (2002), doi: 10.1016/S0167-577X(02)00430-5
- [9] Z.E. Erkmen, Y. Genc, F.N. Oktar, J. Am. Ceram. Soc. 90, 2885 (2007), doi: 10.1111/j.1551-2916.2007.01849.x
- [10] K.E. Öksüz, A. Özer, Dig. J. Nanomater. Biostruct. 11, 167 (2016)
- [11] L.L. Hench, E.C. Ethridge, Biomaterials: An interfacial Approach, Academic Press, New York 1982, p. 384, doi: 10.1002/jbm.820190515
- [12] B. Masson, R. Rack, G. Willmann, H.G. Pfaff, Biomech. Biomater. Ortop. 14, 143 (2004), doi: 10.1007/978-1-4471-3774-0_14
- [13] A.F. Lemos, J.M.F. Ferreira, Key Eng. Mater. 254-256, 1037 (2004), doi: 10.4028/www.scientific.net/KEM.254-256.1037
- [14] F.N Oktar, M. Yetmez, S. Agathopoulos, G. Lopez, G. Goller, I. Peker, J.M.F. Ferreira, J. Mater. Sci: Mater. Med. 17, 1161 (2006), doi: 10.1007/s10856-006-0544-5
- [15] J. Chevalier, Biomater. 27, 535 (2006), doi: 10.1016/j.biomaterials.2005.07.034
- [16] J. Chevalier, S. Deville, E. Munch, R. Jullian, Biomater. 25, 5539 (2004), doi: 10.1016/j.biomaterials.2004.01.002
- [17] A.B. Khalil, S.W. Kim, Y.K. Kim, Mater. Sci. Eng. A 456, 368 (2007), doi: 10.1016/j.msea.2006.12.005
- [18] British Standard Non-metallic materials for surgical implants, Part 2, Specification for ceramic materials based on alumina, BS (No 7253), Part 2, ISO 6474-1981 (1990)
- [19] C. Vasconcelos, Sintering of Ceramics - New Emerging Techniques, Publisher-Intech, 2012, doi: 10.5772/33017
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv131n366kz