Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 3 | 576-579

Article title

Effect of Yttria on the Phase Formation and Sintering of HA-Al₂O₃ Biocomposites

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Hydroxyapatite is very-well known as the main component of hard tissues and, as such, it has attracted much attention by researchers in the recent decades. This study was aimed to present the characterization of Y₂O₃ doped 50 wt.% hydroxyapatite - 50 wt.% Al₂O₃ composite materials fabricated at relatively high temperature of 1600°C. Hydroxyapatite powder was obtained from bovine bones via calcination and ball milling technique. Fine powders ( ≤ 1 μm) of hydroxyapatite/Al₂O₃ were admixed with 0.5 and 1 wt.% Y₂O₃ powders. Powder compacts were sintered at 1600°C for 4 h in air atmosphere. The field emission scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffraction studies following the relative density measurements were conducted. Moreover, the microhardness was studied as the mechanical property of sintered samples. The effect of increasing Y₂O₃ content on surface morphology, elemental distribution and phase evaluation was investigated in hydroxyapatite/Al₂O₃ biocomposite materials. It was found that by increasing Y₂O₃ content, the relative density increased up to 98.8%, while the hardness increased to 863 HV_{(0.2)}. The main phases, which were found, are Hibonite - CaO(Al₂O₃)₆ and beta-tricalcium phosphate - Ca₃(PO₄)₂, according to X-ray diffraction pattern.

Keywords

Contributors

author
  • Cumhuriyet University, Department of Metallurgical and Materials Engineering, 58140, Sivas, Turkey
author
  • Cumhuriyet University, Department of Metallurgical and Materials Engineering, 58140, Sivas, Turkey

References

  • [1] P.V. Giannoudis, H. Dinopoulos, E. Tsiridis, Injury 36, 20 (2005), doi: 10.1016/j.injury.2005.07.029
  • [2] X. Li, L. Wang, Y. Fan, Q. Feng, F.Z. Cui, F. Watari, J. Biomed. Mater. Res. 101, 2424 (2013), doi: 10.1002/jbm.a.34539
  • [3] J.H.G. Rocha, A.F. Lemos, S. Agathopoulos, P. Valèrio, S. Kannan, F.N. Oktar, J.M.F. Ferreira, Bone 37, 850 (2005), doi: 10.1016/j.bone.2005.06.018
  • [4] M. Jarcho, Clin. Orthop. Relat. Res. 157, 259 (1981)
  • [5] K. De Groot, C.P.A Klein, J.G.C Wolke, J.M.A. De Blieck-Hogervorst, Handbook of bioactive ceramics, vol. 2, CRC Press, Boca Raton 1990
  • [6] L. Hong, H.C. Xu, K. De Groot, J. Biomed. Mater. Res. 26, 7 (1992), doi: 10.1002/jbm.820260103
  • [7] J.T. Edwards, J.B. Brunski, H.W. Higuchi, J. Biomed. Mater. Res. 36, 454 (1997), doi: 10.1002/(SICI)1097-4636(19970915)36:4<454::AID-JBM3>3.0.CO;2-D
  • [8] G. Goller, F.N. Oktar, Mater. Lett. 56, 142 (2002), doi: 10.1016/S0167-577X(02)00430-5
  • [9] Z.E. Erkmen, Y. Genc, F.N. Oktar, J. Am. Ceram. Soc. 90, 2885 (2007), doi: 10.1111/j.1551-2916.2007.01849.x
  • [10] K.E. Öksüz, A. Özer, Dig. J. Nanomater. Biostruct. 11, 167 (2016)
  • [11] L.L. Hench, E.C. Ethridge, Biomaterials: An interfacial Approach, Academic Press, New York 1982, p. 384, doi: 10.1002/jbm.820190515
  • [12] B. Masson, R. Rack, G. Willmann, H.G. Pfaff, Biomech. Biomater. Ortop. 14, 143 (2004), doi: 10.1007/978-1-4471-3774-0_14
  • [13] A.F. Lemos, J.M.F. Ferreira, Key Eng. Mater. 254-256, 1037 (2004), doi: 10.4028/www.scientific.net/KEM.254-256.1037
  • [14] F.N Oktar, M. Yetmez, S. Agathopoulos, G. Lopez, G. Goller, I. Peker, J.M.F. Ferreira, J. Mater. Sci: Mater. Med. 17, 1161 (2006), doi: 10.1007/s10856-006-0544-5
  • [15] J. Chevalier, Biomater. 27, 535 (2006), doi: 10.1016/j.biomaterials.2005.07.034
  • [16] J. Chevalier, S. Deville, E. Munch, R. Jullian, Biomater. 25, 5539 (2004), doi: 10.1016/j.biomaterials.2004.01.002
  • [17] A.B. Khalil, S.W. Kim, Y.K. Kim, Mater. Sci. Eng. A 456, 368 (2007), doi: 10.1016/j.msea.2006.12.005
  • [18] British Standard Non-metallic materials for surgical implants, Part 2, Specification for ceramic materials based on alumina, BS (No 7253), Part 2, ISO 6474-1981 (1990)
  • [19] C. Vasconcelos, Sintering of Ceramics - New Emerging Techniques, Publisher-Intech, 2012, doi: 10.5772/33017

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv131n366kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.