PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 129 | 1a | A-7-A-25
Article title

Correlative Optical Spectroscopy and Atom Probe Tomography

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
This lecture will introduce and revise recent experimental developments on correlative laser-assisted atom probe tomography and optical spectroscopy, with a particular attention to the domain of semiconductor nanostructures. The main goal of correlative microscopy is to gain a deeper insight in materials science studies. For the materials scientist, indeed, the possibility of establishing a link between optical spectroscopic properties of a given system and the reconstruction of its 3D structure and composition by atom probe tomography yields an unprecedented insight into the complex influence of the structure on the electronic states and on the optical transitions characterizing the system. This lecture will therefore revise the different approaches by which it is possible to correlate optical spectroscopy experiments - in particular micro-photoluminescence with atom probe tomography and, possibly, with transmission electron microscopy. Dedicated sample preparation protocols and recent case studies will be reported. Finally, a perspective approach will be introduced, in which the same femtosecond laser pulse could be exploited not only for triggering ion evaporation, but also photon emission in situ in the atom probe itself.
Keywords
Year
Volume
129
Issue
1a
Pages
A-7-A-25
Physical description
Dates
published
2016-01
References
  • [1] B. Gault, M.P. Moody, J.P. Cairney, S.P. Ringer, Atom Probe Microscopy, Springer, New York 2012
  • [2] M.K. Miller, R.G. Forbes, Atom-Probe Tomography: The Local Electrode Atom Probe, Springer: New York 2014
  • [3] D.J. Larson, T.J. Prosa, R.M. Ulfig, B.P. Geiser, T.F. Kelly, Local electrode atom probe tomography, Springer, New York 2014
  • [4] B. Gault, F. Vurpillot, A. Vella, M. Gilbert, A. Menand, D. Blavette, B. Deconihout, Rev. Sci. Instrum. 77, 043705 (2006), doi: 10.1063/1.2194089
  • [5] T. Kelly, M.K. Miller, Rev. Sci. Instrum. 78, 031101 (2007), doi: 10.1063/1.2709758
  • [6] T.F. Kelly, D.J. Larson, K. Thompson, R.L. Alvis, J.H. Bunton, J.D. Olson, B.P. Gorman, Ann. Rev. Mater. Sci. 37, 681 (2007), doi: 10.1146/annurev.matsci.37.052506.084239
  • [7] D. Blavette, S. Duguay, EPJ: Appl. Phys. 68, 10101 (2014)
  • [8] W.J. Choyke, G. Pensl, MRS Bull. 22, 25 (March 1997), doi: 10.1557/S0883769400032723
  • [9] M. Grundmann, The Physics of Semiconductors, Springer, Berlin 2010
  • [10] A. Mascarenhas, S. Francoeur, S. Yoon, in: Dilute Nitride Semiconductors, Ed. M. Henini, Elsevier, Oxford 2005, p. 179
  • [11] A. Ziani, C. Davesnne, C. Labbé, J. Cardin, P. Marie, C. Frilay, X. Portier, Thin Solid Films 553, 52 (2014), doi: 10.1016/j.tsf.2013.11.123
  • [12] J.H. Davies, The Physics of Low-Dimensional Semiconductors: An Introduction, Cambridge University Press, New York 1997
  • [13] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Les Editions de Physique, Paris 1988
  • [14] P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, Wiley, Chichester 2005
  • [15] B. Gil, Low-Dimensional Nitride Semiconductors, Oxford University Press, Oxford 2002
  • [16] D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Phys. Rev. Lett. 53, 2173 (1984), doi: 10.1103/PhysRevLett.53.2173
  • [17] Y.H. Kuo, Y.K. Lee, Y. Ge, S. Ren, J.E. Roth, T.I. Kamins, J.S. Harris, Nature 437, 1334 (2005), doi: 10.1038/nature04204
  • [18] F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 56, R10024 (1997), doi: 10.1103/PhysRevB.56.R10024
  • [19] L.F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F.H. Julien, R. Songmuang, M. Kociak, Nano Lett. 11, 568 (2011), doi: 10.1021/nl103549t
  • [20] Ł. Kłopotowski, V. Voliotis, A. Kudelski, A.I. Tartakovskii, P. Wojnar, K. Fronc, R. Grousson, O. Krebs, M.S. Skolnick, G. Karczewski, T. Wojtowicz, Phys. Rev. B 83, 155319 (2011), doi: 10.1103/PhysRevB.83.155319
  • [21] R. Kudrawiec, Phys. Status Solidi B 247, 1616 (2011), doi: 10.1002/pssc.201000833
  • [22] M. Heiss, Y. Fontana, A. Gustafsson, G. Wüst, C. Magen, D.D. O'Regan, A. Fontcuberta i Morral, Nature Mater. 12, 439 (2013), doi: 10.1038/nmat3557
  • [23] L. Mancini, Y. Fontana, S. Conesa-Boj, I. Blum, F. Vurpillot, L. Francaviglia, E. Russo-Averchi, M. Heiss, J. Arbiol, A. Fontcuberta i Morral, L. Rigutti, Appl. Phys. Lett. 105, 243106 (2014), doi: 10.1063/1.4904952
  • [24] S. Birner, http://www.nextnano.de/nextnano3/~Nextnano3 (accessed September 2014)
  • [25] L. Rigutti, G. Jacopin, L. Largeau, E. Galopin, A. De Luna Bugallo, F.H. Julien, J.C. Harmand, F. Glas, M. Tchernycheva, Phys. Rev. B 83, 155320 (2011), doi: 10.1103/PhysRevB.83.155320
  • [26] P. Billaud, S. Marhaba, E. Cottancin, L. Arnaud, G. Bachelier, C. Bonnet, N. Del Fatti, J. Lermé, F. Vallée, J.-L. Vialle, M. Broyer, M. Pellarin, J. Phys. Chem. C 112, 978 (2008), doi: 10.1021/jp076955m
  • [27] J.F. Ziegler, The Stopping and Range of Ions in Matter, http://www.srim.org, (accessed January 12, 2015)
  • [28] J. Mayer, L.A. Giannuzzi, T. Kamino, J. Michael, MRS Bull. 32, 400 (2007), doi: 10.1557/mrs2007.63
  • [29] L.F. Zagonel, L. Rigutti, M. Tchernycheva, G. Jacopin, R. Songmuang, M. Kociak, Nanotechnology 23, 455205 (2012), doi: 10.1088/0957-4484/23/45/455205
  • [30] L. Rigutti, A. Vella, F. Vurpillot, A. Gaillard, N. Sevelin-Radiguet, J. Houard, A. Hideur, G. Martel, A. De Luna Bugallo, G. Jacopin, B. Deconihout, Ultramicroscopy 132, 75 (2013), doi: 10.1016/j.ultramic.2013.02.002
  • [31] M. Beversluis, A. Bouhelier, L. Novotny, Phys. Rev. B 68, 115433 (2003), doi: 10.1103/PhysRevB.68.115433
  • [32] A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, G.P. Wiederrecht, Phys. Rev. Lett. 95, 267405 (2005), doi: 10.1103/PhysRevLett.95.267405
  • [33] L. Rigutti, in: Wiley Encyclopedia of Electrical and Electronic Engineering, Wiley, 2015, p. 1
  • [34] L. Rigutti, I. Blum, D. Shinde, D. Hernández-Maldonado, W. Lefebvre, J. Houard, F. Vurpillot, A. Vella, M. Tchernycheva, C. Durand, J. Eymery, B. Deconihout, Nano Lett. 14, 107 (2014), doi: 10.1021/nl4034768
  • [35] H.E. Ruda, A. Shik, 10.1063/1.2216879HUKHUKJ. Appl. Phys. 100, 024314 (2006)
  • [36] S.L. Chuang, C.S. Chang, Phys. Rev. B 54, 2491 (1996), doi: 10.1103/PhysRevB.54.2491
  • [37] T.M. Smeeton, M.J. Kappers, J.S. Barnard, M.E. Vickers, C.J. Humphreys, Appl. Phys. Lett. 83, 5419 (2003), doi: 10.1063/1.1587251
  • [38] H. Jönen, U. Rossow, H. Bremers, L. Hoffmann, M. Brendel, A.D. Dräger, A. Hangleiter, Appl. Phys. Lett. 99, 011901 (2011), doi: 10.1063/1.3607301
  • [39] L. Mancini, N. Amirifar, D. Shinde, I. Blum, M. Gilbert, A. Vella, L. Rigutti, J. Phys. Chem. C 118, 24136 (2014), doi: 10.1021/jp5071264
  • [40] R. Köster, J.S. Hwang, C. Durand, D. Le Si Dang, J. Eymery, Nanotechnology 21, 015602 (2010), doi: 10.1088/0957-4484/21/1/015602
  • [41] R. Köster, J.S. Hwang, D. Salomon, X. Chen, C. Bougerol, J.P. Barnes, D. Le Si Dang, L. Rigutti, A. De Luna Bugallo, G. Jacopin, M. Tchernycheva, C. Durand, J. Eymery, Nano Lett. 11, 4839 (2011), doi: 10.1021/nl202686n
  • [42] S.E. Bennett, D.W. Saxey, M.J. Kappers, J.S. Barnard, C.J. Humphreys, Appl. Phys. Lett. 99, 021906 (2011), doi: 10.1063/1.3610468
  • [43] E.P. Silaeva, M. Karahka, H.J. Kreuzer, Curr. Opin. Solid State Mater. Sci. 17, 211 (2013), doi: 10.1016/j.cossms.2013.08.001
  • [44] E.P. Silaeva, L. Arnoldi, M.L. Karahka, B. Deconihout, A. Menand, H.J. Kreuzer, A. Vella, Nano Lett. 14, 6066 (2014), doi: 10.1021/nl502715s
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv129n1a01kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.