PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 4 | 972-975
Article title

Correlation between Copper Precipitation and Grown-In Oxygen Precipitates in 300~mm Czochralski Silicon Wafer

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The behaviors of copper (Cu) precipitation along the radial direction of the 300 mm Czochralski grown silicon wafer have been investigated. It is found that the density of Cu precipitates decreases from the center to edge of the silicon wafer. Moreover, it is revealed that the density of grown-in oxygen precipitates also decreases along the radial direction as mentioned above. Therefore, it is apparent that the Cu precipitate density is positively correlative to the grown-in oxygen precipitate density. This is due to that the grown-in oxygen precipitates can serve as the heterogeneous nucleation centers for Cu precipitation. It is suggested that the Cu decoration in combination with preferential etching can be used to indirectly evaluate the radial distribution of grown-in oxygen precipitates in the silicon wafers.
Keywords
Contributors
author
  • State Key Laboratory of Silicon Materials and Department of Material Science and Engineering Zhejiang University, Hangzhou 310027, China
author
  • State Key Laboratory of Silicon Materials and Department of Material Science and Engineering Zhejiang University, Hangzhou 310027, China
author
  • State Key Laboratory of Silicon Materials and Department of Material Science and Engineering Zhejiang University, Hangzhou 310027, China
References
  • [1] Y.H. Zeng, X.Y. Ma, J.H. Chen, W.J. Song, W.Y. Wang, L.F. Gong, D.X. Tian, D.R. Yang, J. Appl. Phys. 111, 033520 (2012), doi: 10.1063/1.3682112
  • [2] I. Lee, U. Paik, J. Park, J. Cryst. Growth 365, 6 (2013), doi: 10.1016/j.jcrysgro.2012.12.033
  • [3] B.S. Moon, B.C. Sim, J.G. Park, Jpn. J. Appl. Phys. 49, 121301 (2010), doi: 10.1143/JJAP.49.121301
  • [4] G. Kissinger, D. Graf, U. Lambert, H. Richter, J. Electrochem. Soc. 144, 1447 (1997), doi: 10.1149/1.1837610
  • [5] G. Kissinger, T. Grabolla, G. Morgenstern, H. Richter, D. Graf, J. Vanhellemont, U. Lambert, W. von Ammon, J. Electrochem. Soc. 146, 1971 (1999), doi: 10.1149/1.1391875
  • [6] W.Y. Wang, D.R. Yang, X.Y. Ma, D.L. Que, J. Appl. Phys. 104, 013508 (2008), doi: 10.1063/1.2949402
  • [7] A.A. Istratov, E.R. Weber, J. Electrochem. Soc. 149, G21 (2002), doi: 10.1149/1.1421348
  • [8] R.N. Hall, J.H. Racette, J. Appl. Phys. 35, 379 (1964), doi: 10.1063/1.1713322
  • [9] Z.Q. Xi, D.R. Yang, J. Xu, Y.K. Ji, D.L. Que, H.J. Moeller, Appl. Phys. Lett. 83, 3048 (2003), doi: 10.1063/1.1617377
  • [10] Z.Q. Xi, J. Chen, D.R. Yang, A. Lawerenz, H.J. Moeller, J. Appl. Phys. 97, 094909 (2005), doi: 10.1063/1.1875740
  • [11] V.V. Voronkov, J. Cryst. Growth 59, 625 (1982), doi: 10.1016/0022-0248(82)90386-4
  • [12] V.V. Voronkov, R. Falster, J. Cryst. Growth 204, 462 (1999), doi: 10.1016/s0022-0248(99)00202-x
  • [13] R. Falster, V.V. Voronkov, Phys. Status Solidi B-Basic Res. 222, 219 (2000), doi: 10.1002/1521-3951(200011)222:1<219::aid-pssb219>3.0.co;2-u
  • [14] F. Cristiano, J. Grisolia, B. Colombeau, M. Omri, B. de Mauduit, A. Claverie, L.F. Giles, N.E.B. Cowern, J. Appl. Phys. 87, 8420 (2000), doi: 10.1063/1.373557
  • [15] E. Nes, J. Washburn, J. Appl. Phys. 42, 3562 (1971), doi: 10.1063/1.1660771
  • [16] E. Nes, J.K. Solberg, J. Appl. Phys. 44, 486 (1973), doi: 10.1063/1.1661910
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n455kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.