Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 4 | 972-975

Article title

Correlation between Copper Precipitation and Grown-In Oxygen Precipitates in 300~mm Czochralski Silicon Wafer

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The behaviors of copper (Cu) precipitation along the radial direction of the 300 mm Czochralski grown silicon wafer have been investigated. It is found that the density of Cu precipitates decreases from the center to edge of the silicon wafer. Moreover, it is revealed that the density of grown-in oxygen precipitates also decreases along the radial direction as mentioned above. Therefore, it is apparent that the Cu precipitate density is positively correlative to the grown-in oxygen precipitate density. This is due to that the grown-in oxygen precipitates can serve as the heterogeneous nucleation centers for Cu precipitation. It is suggested that the Cu decoration in combination with preferential etching can be used to indirectly evaluate the radial distribution of grown-in oxygen precipitates in the silicon wafers.

Keywords

Contributors

author
  • State Key Laboratory of Silicon Materials and Department of Material Science and Engineering Zhejiang University, Hangzhou 310027, China
author
  • State Key Laboratory of Silicon Materials and Department of Material Science and Engineering Zhejiang University, Hangzhou 310027, China
author
  • State Key Laboratory of Silicon Materials and Department of Material Science and Engineering Zhejiang University, Hangzhou 310027, China

References

  • [1] Y.H. Zeng, X.Y. Ma, J.H. Chen, W.J. Song, W.Y. Wang, L.F. Gong, D.X. Tian, D.R. Yang, J. Appl. Phys. 111, 033520 (2012), doi: 10.1063/1.3682112
  • [2] I. Lee, U. Paik, J. Park, J. Cryst. Growth 365, 6 (2013), doi: 10.1016/j.jcrysgro.2012.12.033
  • [3] B.S. Moon, B.C. Sim, J.G. Park, Jpn. J. Appl. Phys. 49, 121301 (2010), doi: 10.1143/JJAP.49.121301
  • [4] G. Kissinger, D. Graf, U. Lambert, H. Richter, J. Electrochem. Soc. 144, 1447 (1997), doi: 10.1149/1.1837610
  • [5] G. Kissinger, T. Grabolla, G. Morgenstern, H. Richter, D. Graf, J. Vanhellemont, U. Lambert, W. von Ammon, J. Electrochem. Soc. 146, 1971 (1999), doi: 10.1149/1.1391875
  • [6] W.Y. Wang, D.R. Yang, X.Y. Ma, D.L. Que, J. Appl. Phys. 104, 013508 (2008), doi: 10.1063/1.2949402
  • [7] A.A. Istratov, E.R. Weber, J. Electrochem. Soc. 149, G21 (2002), doi: 10.1149/1.1421348
  • [8] R.N. Hall, J.H. Racette, J. Appl. Phys. 35, 379 (1964), doi: 10.1063/1.1713322
  • [9] Z.Q. Xi, D.R. Yang, J. Xu, Y.K. Ji, D.L. Que, H.J. Moeller, Appl. Phys. Lett. 83, 3048 (2003), doi: 10.1063/1.1617377
  • [10] Z.Q. Xi, J. Chen, D.R. Yang, A. Lawerenz, H.J. Moeller, J. Appl. Phys. 97, 094909 (2005), doi: 10.1063/1.1875740
  • [11] V.V. Voronkov, J. Cryst. Growth 59, 625 (1982), doi: 10.1016/0022-0248(82)90386-4
  • [12] V.V. Voronkov, R. Falster, J. Cryst. Growth 204, 462 (1999), doi: 10.1016/s0022-0248(99)00202-x
  • [13] R. Falster, V.V. Voronkov, Phys. Status Solidi B-Basic Res. 222, 219 (2000), doi: 10.1002/1521-3951(200011)222:1<219::aid-pssb219>3.0.co;2-u
  • [14] F. Cristiano, J. Grisolia, B. Colombeau, M. Omri, B. de Mauduit, A. Claverie, L.F. Giles, N.E.B. Cowern, J. Appl. Phys. 87, 8420 (2000), doi: 10.1063/1.373557
  • [15] E. Nes, J. Washburn, J. Appl. Phys. 42, 3562 (1971), doi: 10.1063/1.1660771
  • [16] E. Nes, J.K. Solberg, J. Appl. Phys. 44, 486 (1973), doi: 10.1063/1.1661910

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n455kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.