PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 1 | 60-64
Article title

Infinite Body Centered Cubic Network of Identical Resistors

Content
Title variants
Languages of publication
EN
Abstracts
EN
We express the equivalent resistance between the origin (0,0,0) and any other lattice site (n_1,n_2,n_3) in an infinite body centered cubic network consisting of identical resistors each of resistance R rationally in terms of known values b_{0} and π. The equivalent resistance is then calculated. For large separations two asymptotic formulae for the resistance are presented and some numerical results with analysis are given.
Keywords
Contributors
author
  • Dep. of Physics, Faculty of Arts and Sciences, P.O. Box 7, Palestine Techn. Univ., Kadoorie, Tulkarm, Palestine
author
  • General Studies Department, Yanbu Industrial College, P.O. Box 30436, Yanbu Industrial City, Saudi Arabia
author
  • Department of Physics, Al-Hussein Bin Talal University, Ma'an, 71111, Jordan
author
  • Department of Physics, Mutah University, Karak, Jordan
author
  • Department of Physics, The University of Jordan, Amman 11942, Jordan
References
  • [1] R. Brout, doi: 10.1103/PhysRev.118.1009, Phys. Rev. 118, 1009 (1960)
  • [2] N.W. Dalton, D.W. Wood, doi: 10.1088/0370-1328/90/2/316, Proc. Phys. Soc. (London) 90, 4591 (1967)
  • [3] M. Tax, doi: 10.1103/PhysRev.97.629, Phys. Rev. 97, 629 (1955)
  • [4] P.H. Dederichs, K. Schroeder, R. Zeller, Point Defect in Metals II, Springer, Berlin 1980
  • [5] B.D. Hughes, doi: 10.1016/0378-4371(86)90058-0, Physica A 134, 443 (1986)
  • [6] E.W. Montroll, doi: 10.1137/0104014 , J. Soc. Industr. Appl. Math. 4, 241 (1956)
  • [7] G.F. Koster, D.C. Slater, doi: 10.1103/PhysRev.96.1208, Phys. Rev. 96, 1208 (1954)
  • [8] Q. Li, C. Soukoulis, E.N. Economou, G.S. Grest, doi: 10.1103/PhysRevB.40.2825, Phys. Rev. B 40, 2825 (1989)
  • [9] E.N. Economou, Green's Functions in Quantum Physics, 2nd ed., Springer-Verlag, Berlin 1983, p. 3, p. 71
  • [10] T. Morita, T. Horiguchi, doi: 10.1063/1.1665692, J. Math. Phys. 12, 981 (1971)
  • [11] T. Morita, T. Horiguchi, doi: 10.1063/1.1665693 , J. Math. Phys. 12, 986 (1971)
  • [12] T. Morita, doi: 10.1063/1.1665800, J. Math. Phys. 12, 1744 (1971)
  • [13] G.S. Joyce, doi: 10.1063/1.1665748, J. Math. Phys. 23, 1390 (1971)
  • [14] G.S. Joyce, doi: 10.1088/0022-3719/4/12/008, J. Phys. C: Solid State Phys. 23, 1510 (1971)
  • [15] T. Horiguchi, doi: 10.1143/JPSJ.30.1261, J. Phys. Soc. Jpn. 30, 1261 (1971)
  • [16] S. Katsura, T. Horiguchi, doi: 10.1063/1.1665581, J. Math. Phys. 12, 230 (1971)
  • [17] M.L. Glasser, doi: 10.1063/1.1666113, J. Math. Phys. 13, 1145 (1972)
  • [18] M. Inoue, doi: 10.1063/1.522609, J. Math. Phys. 16, 809 (1975)
  • [19] K. Mano, doi: 10.1063/1.522770, J. Math. Phys. 16, 1726 (1975)
  • [20] T. Morita, doi: 10.1088/0305-4470/8/4/008, J. Phys. A, Math. Gen. 8, 478 (1975)
  • [21] T. Morita, T. Horiguchi, doi: 10.1088/0022-3719/8/11/002, J. Phys. C, Solid State Phys. 8, L232 (1975)
  • [22] M.L. Glasser, I.J. Zucker, doi: 10.1073/pnas.74.5.1800, Proc. Natl. Acad. Sci. USA 74, 1800 (1977)
  • [23] M.L. Glasser, J. Boersma, doi: 10.1088/0305-4470/33/28/306, J. Phys. A, Math. Gen. 33, 5017 (2000)
  • [24] R.S. Hijjawi, J.H. Asad, A.J. Sakaji, J.M. Khalifeh, doi: 10.1023/B:IJTP.0000049028.18912.b1, Int. J. Theor. Phys. 43, 2299 (2004)
  • [25] J.H. Asad, doi: 10.1142/S021798490701244X, Mod. Phys. Lett. B 21, 139 (2007)
  • [26] F.J. Bartis, doi: 10.1119/1.1974081, Am. J. Phys. 35, 354 (1967)
  • [27] G. Venezian, doi: 10.1119/1.17696, Am. J. Phys. 62, 1000 (1994)
  • [28] D. Atkinson, F.J. Van Steenwijk, doi: 10.1119/1.19311, Am. J. Phys. 67, 486 (1999)
  • [29] M. Jeng, doi: 10.1119/1.19370, Am. J. Phys. 68, 37 (2000)
  • [30] J. Cserti, doi: 10.1119/1.1285881, Am. J. Phys. 68, 896 (2000)
  • [31] J. Cserti, G. David, A. Piroth, doi: 10.1119/1.1419104, Am. J. Phys. 70, 153 (2002)
  • [32] J. Cserti, G. Szechenyi, G. David, doi: 10.1088/1751-8113/44/21/215201, J. Phys. A, Math. Theor. 44, 215201 (2011)
  • [33] J.H. Asad, A. Sakaji, R.S. Hijjawi, J.M. Khalifeh, doi: 10.1023/B:IJTP.0000049021.94530.6e, Int. J. Theor. Phys. 43, 2223 (2004)
  • [34] J.H. Asad, A. Sakaji, R.S. Hijjawi, J.M. Khalifeh, doi: 10.1140/epjb/e2006-00311-x, Eur. Phys. J. B 52, 365 (2006)
  • [35] J.H. Asad, R.S. Hijjawi, A.J. Sakaji, J.M. Khalifeh, doi: 10.1007/s10773-005-3977-6, Int. J. Theor. Phys. 44, 471 (2005)
  • [36] R.S. Hijjawi, J.H. Asad, A.J. Sakaji, M. Al-Sabayleh, J.M. Khalifeh, doi: 10.1051/epjap:2008015, Eur. Phys. J. Appl. Phys. 41, 111 (2008)
  • [37] J.H. Asad, A.A. Diab, R.S. Hijjawi, J.M. Khalifeh, doi: 10.1140/epjp/i2013-13002-8, Europ. Phys. J. Plus 128, 1 (2013)
  • [38] J.H. Asad, doi: 10.1007/s10955-013-0716-x, J. Stat. Phys. 150, 1177 (2013)
  • [39] G. Horwitz, H.B. Callen, doi: 10.1103/PhysRev.124.1757, Phys. Rev. 124, 1757 (1961)
  • [40] B.V. Thompson, D.A. Lavis, doi: 10.1088/0370-1328/91/3/318, Proc. Phys. Soc. (Lond.) 91, 645 (1967)
  • [41] R. Tahir-Kheli, D. ter Haar, doi: 10.1103/PhysRev.127.88, Phys. Rev. 127, 88 (1962)
  • [42] H.B. Callen, doi: 10.1103/PhysRev.130.890, Phys. Rev. 130, 890 (1963)
  • [43] E.W. Montroll, doi: 10.1007/BF02780990, Nuovo Cimento Suppl. 6, 265 (1949)
  • [44] T.H. Berlin, M. Kac, doi: 10.1103/PhysRev.86.821, Phys. Rev. 86, 821 (1952)
  • [45] M. Lax, doi: 10.1103/PhysRev.97.629, Phys. Rev. 97, 629 (1955)
  • [46] W.F. Van Peijpe, doi: 10.1016/S0031-8914(38)80158-0, Physica 5, 465 (1938)
  • [47] G.N. Watson, doi: 10.1093/qmath/os-10.1.266, Quart. J. Math. (Oxford) 10, 266 (1939)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv125n111kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.