Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 125 | 1 | 60-64

Article title

Infinite Body Centered Cubic Network of Identical Resistors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We express the equivalent resistance between the origin (0,0,0) and any other lattice site (n_1,n_2,n_3) in an infinite body centered cubic network consisting of identical resistors each of resistance R rationally in terms of known values b_{0} and π. The equivalent resistance is then calculated. For large separations two asymptotic formulae for the resistance are presented and some numerical results with analysis are given.

Keywords

Contributors

author
  • Dep. of Physics, Faculty of Arts and Sciences, P.O. Box 7, Palestine Techn. Univ., Kadoorie, Tulkarm, Palestine
author
  • General Studies Department, Yanbu Industrial College, P.O. Box 30436, Yanbu Industrial City, Saudi Arabia
author
  • Department of Physics, Al-Hussein Bin Talal University, Ma'an, 71111, Jordan
author
  • Department of Physics, Mutah University, Karak, Jordan
author
  • Department of Physics, The University of Jordan, Amman 11942, Jordan

References

  • [1] R. Brout, doi: 10.1103/PhysRev.118.1009, Phys. Rev. 118, 1009 (1960)
  • [2] N.W. Dalton, D.W. Wood, doi: 10.1088/0370-1328/90/2/316, Proc. Phys. Soc. (London) 90, 4591 (1967)
  • [3] M. Tax, doi: 10.1103/PhysRev.97.629, Phys. Rev. 97, 629 (1955)
  • [4] P.H. Dederichs, K. Schroeder, R. Zeller, Point Defect in Metals II, Springer, Berlin 1980
  • [5] B.D. Hughes, doi: 10.1016/0378-4371(86)90058-0, Physica A 134, 443 (1986)
  • [6] E.W. Montroll, doi: 10.1137/0104014 , J. Soc. Industr. Appl. Math. 4, 241 (1956)
  • [7] G.F. Koster, D.C. Slater, doi: 10.1103/PhysRev.96.1208, Phys. Rev. 96, 1208 (1954)
  • [8] Q. Li, C. Soukoulis, E.N. Economou, G.S. Grest, doi: 10.1103/PhysRevB.40.2825, Phys. Rev. B 40, 2825 (1989)
  • [9] E.N. Economou, Green's Functions in Quantum Physics, 2nd ed., Springer-Verlag, Berlin 1983, p. 3, p. 71
  • [10] T. Morita, T. Horiguchi, doi: 10.1063/1.1665692, J. Math. Phys. 12, 981 (1971)
  • [11] T. Morita, T. Horiguchi, doi: 10.1063/1.1665693 , J. Math. Phys. 12, 986 (1971)
  • [12] T. Morita, doi: 10.1063/1.1665800, J. Math. Phys. 12, 1744 (1971)
  • [13] G.S. Joyce, doi: 10.1063/1.1665748, J. Math. Phys. 23, 1390 (1971)
  • [14] G.S. Joyce, doi: 10.1088/0022-3719/4/12/008, J. Phys. C: Solid State Phys. 23, 1510 (1971)
  • [15] T. Horiguchi, doi: 10.1143/JPSJ.30.1261, J. Phys. Soc. Jpn. 30, 1261 (1971)
  • [16] S. Katsura, T. Horiguchi, doi: 10.1063/1.1665581, J. Math. Phys. 12, 230 (1971)
  • [17] M.L. Glasser, doi: 10.1063/1.1666113, J. Math. Phys. 13, 1145 (1972)
  • [18] M. Inoue, doi: 10.1063/1.522609, J. Math. Phys. 16, 809 (1975)
  • [19] K. Mano, doi: 10.1063/1.522770, J. Math. Phys. 16, 1726 (1975)
  • [20] T. Morita, doi: 10.1088/0305-4470/8/4/008, J. Phys. A, Math. Gen. 8, 478 (1975)
  • [21] T. Morita, T. Horiguchi, doi: 10.1088/0022-3719/8/11/002, J. Phys. C, Solid State Phys. 8, L232 (1975)
  • [22] M.L. Glasser, I.J. Zucker, doi: 10.1073/pnas.74.5.1800, Proc. Natl. Acad. Sci. USA 74, 1800 (1977)
  • [23] M.L. Glasser, J. Boersma, doi: 10.1088/0305-4470/33/28/306, J. Phys. A, Math. Gen. 33, 5017 (2000)
  • [24] R.S. Hijjawi, J.H. Asad, A.J. Sakaji, J.M. Khalifeh, doi: 10.1023/B:IJTP.0000049028.18912.b1, Int. J. Theor. Phys. 43, 2299 (2004)
  • [25] J.H. Asad, doi: 10.1142/S021798490701244X, Mod. Phys. Lett. B 21, 139 (2007)
  • [26] F.J. Bartis, doi: 10.1119/1.1974081, Am. J. Phys. 35, 354 (1967)
  • [27] G. Venezian, doi: 10.1119/1.17696, Am. J. Phys. 62, 1000 (1994)
  • [28] D. Atkinson, F.J. Van Steenwijk, doi: 10.1119/1.19311, Am. J. Phys. 67, 486 (1999)
  • [29] M. Jeng, doi: 10.1119/1.19370, Am. J. Phys. 68, 37 (2000)
  • [30] J. Cserti, doi: 10.1119/1.1285881, Am. J. Phys. 68, 896 (2000)
  • [31] J. Cserti, G. David, A. Piroth, doi: 10.1119/1.1419104, Am. J. Phys. 70, 153 (2002)
  • [32] J. Cserti, G. Szechenyi, G. David, doi: 10.1088/1751-8113/44/21/215201, J. Phys. A, Math. Theor. 44, 215201 (2011)
  • [33] J.H. Asad, A. Sakaji, R.S. Hijjawi, J.M. Khalifeh, doi: 10.1023/B:IJTP.0000049021.94530.6e, Int. J. Theor. Phys. 43, 2223 (2004)
  • [34] J.H. Asad, A. Sakaji, R.S. Hijjawi, J.M. Khalifeh, doi: 10.1140/epjb/e2006-00311-x, Eur. Phys. J. B 52, 365 (2006)
  • [35] J.H. Asad, R.S. Hijjawi, A.J. Sakaji, J.M. Khalifeh, doi: 10.1007/s10773-005-3977-6, Int. J. Theor. Phys. 44, 471 (2005)
  • [36] R.S. Hijjawi, J.H. Asad, A.J. Sakaji, M. Al-Sabayleh, J.M. Khalifeh, doi: 10.1051/epjap:2008015, Eur. Phys. J. Appl. Phys. 41, 111 (2008)
  • [37] J.H. Asad, A.A. Diab, R.S. Hijjawi, J.M. Khalifeh, doi: 10.1140/epjp/i2013-13002-8, Europ. Phys. J. Plus 128, 1 (2013)
  • [38] J.H. Asad, doi: 10.1007/s10955-013-0716-x, J. Stat. Phys. 150, 1177 (2013)
  • [39] G. Horwitz, H.B. Callen, doi: 10.1103/PhysRev.124.1757, Phys. Rev. 124, 1757 (1961)
  • [40] B.V. Thompson, D.A. Lavis, doi: 10.1088/0370-1328/91/3/318, Proc. Phys. Soc. (Lond.) 91, 645 (1967)
  • [41] R. Tahir-Kheli, D. ter Haar, doi: 10.1103/PhysRev.127.88, Phys. Rev. 127, 88 (1962)
  • [42] H.B. Callen, doi: 10.1103/PhysRev.130.890, Phys. Rev. 130, 890 (1963)
  • [43] E.W. Montroll, doi: 10.1007/BF02780990, Nuovo Cimento Suppl. 6, 265 (1949)
  • [44] T.H. Berlin, M. Kac, doi: 10.1103/PhysRev.86.821, Phys. Rev. 86, 821 (1952)
  • [45] M. Lax, doi: 10.1103/PhysRev.97.629, Phys. Rev. 97, 629 (1955)
  • [46] W.F. Van Peijpe, doi: 10.1016/S0031-8914(38)80158-0, Physica 5, 465 (1938)
  • [47] G.N. Watson, doi: 10.1093/qmath/os-10.1.266, Quart. J. Math. (Oxford) 10, 266 (1939)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv125n111kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.