PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 1 | 25-30
Article title

Perturbation to Noether Symmetry and Noether Adiabatic Invariants of Discrete Difference Variational Hamilton Systems

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The perturbation to the Noether symmetry and the Noether adiabatic invariants of discrete difference variational Hamilton systems are investigated. The discrete the Noether exact invariant induced directly by the the Noether symmetry of the system without perturbation is given. The concept of discrete high-order adiabatic invariant is presented, the criterion of the perturbation to the Noether symmetry is established, and the discrete the Noether adiabatic invariant induced directly by the perturbation to the Noether symmetry is obtained. Lastly, an example is discussed to illustrate the application of the results.
Keywords
EN
Publisher

Year
Volume
122
Issue
1
Pages
25-30
Physical description
Dates
published
2012-07
received
2011-04-15
(unknown)
2012-03-02
Contributors
author
  • Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China
  • Key Laboratory of Space Object and Debris Observation, P.O. CAS, Nanjing 210008, China
author
  • College of Science, China University of Petroleum, Qingdao 266555, China
References
  • 1. F.X. Mei, Symmetries and Conserved Quantities of Constrained Mechanical Systems, Beijing Institute of Technology Press, Beijing 2004 (in Chinese)
  • 2. S.K. Luo, Y.F. Zhang, et al., Advances in the Study of Dynamics of Constrained Mechanics Systems, Science Press, Beijing 2008 (in Chinese)
  • 3. D.F.M. Torres, in: Dynamics, Bifurcations, and Control, Kloster Irsee, 2001, Lecture Notes in Control and Inform. Sci., Eds. F. Colonius, L. Grüne, Vol. 273, Springer, Berlin 2002, p. 287
  • 4. D.F.M. Torres, Eur. J. Control. 8, 56 (2002)
  • 5. D.F.M. Torres, Commun. Pure Appl. Anal. 3, 491 (2004)
  • 6. D. Levi, R. Yamilov, J. Math. Phys. 38, 6648 (1997)
  • 7. D. Levi, S. Tremblay, P. Winternitz, J. Phys. A, Math. Gen. 33, 8507 (2000)
  • 8. D. Levi, S. Tremblay, P. Winternitz, J. Phys. A, Math. Gen. 34, 9507 (2001)
  • 9. V. Dorodnitsyn, Appl. Numer. Math. 39, 307 (2001)
  • 10. Z. Bartosiewicz, D.F.M. Torres, J. Math. Anal. Appl. 342, 1220 (2008)
  • 11. N. Martins, D.F.M. Torres, Appl. Math. Lett. 23, 1432 (2010)
  • 12. Z. Bartosiewicz, N. Martins, D.F.M. Torres, Eur. J. Control. 17, 9 (2011)
  • 13. S.Y. Shi, J.L. Fu, L.Q. Chen, Chin. Phys. B 17, 385 (2008)
  • 14. S.Y. Shi, X.H. Huang, X.B. Zhang, L. Jin, Acta Phys. Sin. 58, 3625 (2009) (in Chinese)
  • 15. J.L. Fu, H. Fu, R.W. Liu, Phys. Lett. A 374, 1812 (2010)
  • 16. J.M. Burgers, Ann. Phys. 357, 195 (1917)
  • 17. Y.Y. Zhao, F.X. Mei, Symmetries and Invariants of Mechanical Systems, Science Press, Beijing 1999 (in Chinese)
  • 18. J.L. Fu, L.Q. Chen, Phys. Lett. A 324, 95 (2004)
  • 19. X.W. Chen, Y.M. Li, Y.H. Zhao, Phys. Lett. A 337, 274 (2005)
  • 20. M.J. Zhang, J.H. Fang, X.N. Zhang, K. Lu, Chin. Phys. B 17, 1957 (2008)
  • 21. N. Ding, X.F. Chen, J.H. Fang, C.Z. Liu, Phys. Lett. A 373, 3005 (2009)
  • 22. M.J. Zhang, J.H. Fang, K. Lu, T. Pang, P. Lin, Commun. Theor. Phys. 51, 961 (2009)
  • 23. M.J. Zhang, J.H. Fang, K. Lu, Int. J. Theor. Phys. 49, 427 (2010)
  • 24. M.J. Zhang, J.H. Fang, K. Lu, K.J. Zhang, Y. Li, Chin. Phys. Lett. 26, 120201 (2009)
  • 25. P. Wang, H.J. Zhu, Acta Phys. Pol. A 119, 298 (2011)
  • 26. P.D.F. Gouveia, D.F.M. Torres, E.A.M. Rocha, Control Cybernet. 35, 831 (2006)
  • 27. P.D.F. Gouveia, D.F.M. Torres, Nonlinear Anal. 71, e138 (2009)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv122n1p07kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.