Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 122 | 1 | 25-30

Article title

Perturbation to Noether Symmetry and Noether Adiabatic Invariants of Discrete Difference Variational Hamilton Systems

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The perturbation to the Noether symmetry and the Noether adiabatic invariants of discrete difference variational Hamilton systems are investigated. The discrete the Noether exact invariant induced directly by the the Noether symmetry of the system without perturbation is given. The concept of discrete high-order adiabatic invariant is presented, the criterion of the perturbation to the Noether symmetry is established, and the discrete the Noether adiabatic invariant induced directly by the perturbation to the Noether symmetry is obtained. Lastly, an example is discussed to illustrate the application of the results.

Keywords

EN

Contributors

author
  • Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China
  • Key Laboratory of Space Object and Debris Observation, P.O. CAS, Nanjing 210008, China
author
  • College of Science, China University of Petroleum, Qingdao 266555, China

References

  • 1. F.X. Mei, Symmetries and Conserved Quantities of Constrained Mechanical Systems, Beijing Institute of Technology Press, Beijing 2004 (in Chinese)
  • 2. S.K. Luo, Y.F. Zhang, et al., Advances in the Study of Dynamics of Constrained Mechanics Systems, Science Press, Beijing 2008 (in Chinese)
  • 3. D.F.M. Torres, in: Dynamics, Bifurcations, and Control, Kloster Irsee, 2001, Lecture Notes in Control and Inform. Sci., Eds. F. Colonius, L. Grüne, Vol. 273, Springer, Berlin 2002, p. 287
  • 4. D.F.M. Torres, Eur. J. Control. 8, 56 (2002)
  • 5. D.F.M. Torres, Commun. Pure Appl. Anal. 3, 491 (2004)
  • 6. D. Levi, R. Yamilov, J. Math. Phys. 38, 6648 (1997)
  • 7. D. Levi, S. Tremblay, P. Winternitz, J. Phys. A, Math. Gen. 33, 8507 (2000)
  • 8. D. Levi, S. Tremblay, P. Winternitz, J. Phys. A, Math. Gen. 34, 9507 (2001)
  • 9. V. Dorodnitsyn, Appl. Numer. Math. 39, 307 (2001)
  • 10. Z. Bartosiewicz, D.F.M. Torres, J. Math. Anal. Appl. 342, 1220 (2008)
  • 11. N. Martins, D.F.M. Torres, Appl. Math. Lett. 23, 1432 (2010)
  • 12. Z. Bartosiewicz, N. Martins, D.F.M. Torres, Eur. J. Control. 17, 9 (2011)
  • 13. S.Y. Shi, J.L. Fu, L.Q. Chen, Chin. Phys. B 17, 385 (2008)
  • 14. S.Y. Shi, X.H. Huang, X.B. Zhang, L. Jin, Acta Phys. Sin. 58, 3625 (2009) (in Chinese)
  • 15. J.L. Fu, H. Fu, R.W. Liu, Phys. Lett. A 374, 1812 (2010)
  • 16. J.M. Burgers, Ann. Phys. 357, 195 (1917)
  • 17. Y.Y. Zhao, F.X. Mei, Symmetries and Invariants of Mechanical Systems, Science Press, Beijing 1999 (in Chinese)
  • 18. J.L. Fu, L.Q. Chen, Phys. Lett. A 324, 95 (2004)
  • 19. X.W. Chen, Y.M. Li, Y.H. Zhao, Phys. Lett. A 337, 274 (2005)
  • 20. M.J. Zhang, J.H. Fang, X.N. Zhang, K. Lu, Chin. Phys. B 17, 1957 (2008)
  • 21. N. Ding, X.F. Chen, J.H. Fang, C.Z. Liu, Phys. Lett. A 373, 3005 (2009)
  • 22. M.J. Zhang, J.H. Fang, K. Lu, T. Pang, P. Lin, Commun. Theor. Phys. 51, 961 (2009)
  • 23. M.J. Zhang, J.H. Fang, K. Lu, Int. J. Theor. Phys. 49, 427 (2010)
  • 24. M.J. Zhang, J.H. Fang, K. Lu, K.J. Zhang, Y. Li, Chin. Phys. Lett. 26, 120201 (2009)
  • 25. P. Wang, H.J. Zhu, Acta Phys. Pol. A 119, 298 (2011)
  • 26. P.D.F. Gouveia, D.F.M. Torres, E.A.M. Rocha, Control Cybernet. 35, 831 (2006)
  • 27. P.D.F. Gouveia, D.F.M. Torres, Nonlinear Anal. 71, e138 (2009)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv122n1p07kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.