PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 120 | 5 | 914-917
Article title

Enhancement of the Ultraviolet Luminescence Intensity from Cd-Doped ZnO Films Caused by Exciton Binding

Content
Title variants
Languages of publication
EN
Abstracts
EN
ZnO films doped with the cadmium (0.4-0.6%) were grown on crystalline sapphire c-Al_2O_3 substrates applying radiofrequency magnetron sputtering at the temperature of 400°C in Ar-O_2 atmosphere. The as-grown films were investigated in detail using X-ray diffraction, X-ray photoelectron spectroscopy, and cathodoluminescence spectra. The X-ray diffraction analysis revealed that the films possess a hexagonal wurtzite-type structure with the dominant crystallite orientation along the c axis. It was found that the small concentration of the cadmium significantly enhances the ultraviolet emission associated with excitonic transitions. We suggest that this enhancement effect mainly results from appearance of the cadmium isoelectronic traps, which may bind an exciton, thereby increasing the probability of radiation recombination. The effect of Cd isoelectronic impurity on structural and luminescent properties of ZnO films is discussed.
Keywords
Contributors
author
  • I. Frantsevich Institute for Problems of Material Science, NASU, 03680, Kiev-142, Ukraine
author
  • I. Frantsevich Institute for Problems of Material Science, NASU, 03680, Kiev-142, Ukraine
author
  • I. Frantsevich Institute for Problems of Material Science, NASU, 03680, Kiev-142, Ukraine
author
  • Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
author
  • Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
author
  • Chernivtsi National University, 58012, Chernivtsi, Ukraine
author
  • I. Frantsevich Institute for Problems of Material Science, NASU, 03680, Kiev-142, Ukraine
author
  • I. Frantsevich Institute for Problems of Material Science, NASU, 03680, Kiev-142, Ukraine
References
  • 1. O. Lupan, L. Chow, G. Chai, L. Chernyak, O. Lopatiuk-Tirpak, H. Heinrich, Phys. Status Solidi A 205, 2673 (2008)
  • 2. S.D. Lee, Y.S. Kim, M.S. Yi, J.Y. Choi, S.W. Kim, J. Phys. Chem. C 113, 8954 (2009)
  • 3. Y. Ohno, T. Shirahama, S. Takeda, A. Ishizumi, Y. Kanemitsu, Appl. Phys. Lett. 87, 043106 (2005)
  • 4. P.J. Dean, J. Lumin. 7, 51 (1973)
  • 5. D.G. Thomas, J.J. Hopfield, C.J. Frosch, Phys. Rev. Lett. 15, 857 (1965)
  • 6. J.J. Hopfield, D.G. Thomas, R.T. Lynch, Phys. Rev. Lett. 17, 312 (1966)
  • 7. A. Ievtushenko, V. Karpyna, G. Lashkarev, V. Lazorenko, V. Baturin, A. Karpenko, M. Lunika, A. Dan'ko, Acta Phys. Pol. A 114, 1131 (2008)
  • 8. A.I. Ievtushenko, V.A. Karpyna, V.I. Lazorenko, G.V. Lashkarev, V.D. Khranovskyy, V.A. Baturin, O.Y. Karpenko, M.M. Lunika, K.A. Avramenko, V.V. Strelchuk, O.M. Kutsay, Thin Solid Films 518, 4529 (2010)
  • 9. J.I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, NJ 1971
  • 10. R.W. Martin, P.G. Middleton, K.P. O'Donnell, W. Van der Stricht, Appl. Phys. Lett 74, 263 (1999)
  • 11. C.F. Klingshirn, Semiconductor Optics, Springer, Berlin 1995
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv120n527kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.