PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 119 | 6 | 819-823
Article title

Structural and Optical Properties of ZnO Nanowires Doped with Magnesium

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
ZnO nanowires doped with Mg have been successfully prepared on Au-coated Si (111) substrates using chemical vapor deposition method with a mixture of ZnO, Mg, and activated carbon powders as reactants at 850°C. The structural, compositional, morphological and optical properties of the samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and photoluminescence spectroscopy. The nanowires are single crystalline in nature and preferentially grow up along [0001] direction with the average diameter and length of about 60 nm and several hundred micrometers, respectively, thinner and longer than the results of literature using the similar method. Room temperature photoluminescence spectroscopy shows a blueshift from the bulk band gap emission, which can be attributed to Mg doping that were detected by energy dispersive X-ray analysis EDX in the nanowires. Finally, the possible growth mechanism of crystalline ZnO nanowires is discussed briefly.
Keywords
Contributors
author
  • Institutions of Semiconductors, Shandong Normal University, Jinan 250014, P.R. China
author
  • Institutions of Semiconductors, Shandong Normal University, Jinan 250014, P.R. China
author
  • Institutions of Semiconductors, Shandong Normal University, Jinan 250014, P.R. China
author
  • Institutions of Semiconductors, Shandong Normal University, Jinan 250014, P.R. China
author
  • Institutions of Semiconductors, Shandong Normal University, Jinan 250014, P.R. China
References
  • 1. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C.M. Lieber, Nature 449, 885 (2007)
  • 2. J.B. Shen, H.Z. Zhuang, D.X. Wang, C.S. Xue, H. Liu, Cryst. Growth Des. 9, 2187 (2009)
  • 3. L. Feng, A. Liu, Y. Ma, M. Liu, B. Man, Acta Phys. Pol. A 117, 257 (2010)
  • 4. W. Zaleszczyk, K. Fronc, E. Przezdziecka, E. Janik, A. Presz, M. Czapkiewicz, J. Wrobel, W. Paszkowicz, L. Klopotowski, G. Karczewski, T. Wojtowicz, Acta Phys. Pol. A 114, 1451 (2008)
  • 5. W. Lee, M.C. Jeong, J.M. Myoung, Appl. Phys. Lett. 85, 6167 (2004)
  • 6. S.W. Jung, W.I. Park, G.C. Yi, M. Kim, Adv. Mater. 15, 1358 (2003)
  • 7. Y.L. Seu, L. Pang, Y.L. Chia, Y.T. Tseung, J.H. Chorng, J. Phys. D, Appl. Phys. 37, 2274 (2004)
  • 8. J.S. Jie, G.Z. Wang, X.H. Han, Q.X. Yu, Y. Liao, G.P. Li, J.G. Hou, Chem. Phys. Lett. 387, 466 (2004)
  • 9. M. Yan, H.T. Zhang, E.J. Widjaja, R.P.H. Chang, J. Appl. Phys. 94, 5240 (2003)
  • 10. H.S. Chen, J.J. Qi, Y.H. Huang, Q.L. Liao, Y. Zhang, Acta Phys. Chim. Sin. 23, 55 (2007)
  • 11. K. Gas, K. Fronc, P. Dziawa, W. Knoff, T. Wojciechowski, W. Zaleszczyk, A. Baranowska-Korczyc, J.F. Morhange, W. Paszkowicz, D. Elbaum, G. Karczewski, T. Wojtowicz, W. Szuszkiewicz, Acta Phys. Pol. A 116, 868 (2009)
  • 12. G. Wang, Z.Z. Ye, H.P. He, H.P. Tang, J.S. Li, J. Phys. D, Appl. Phys. 40, 5287 (2007)
  • 13. B.K. Sonawane, M.P. Bhole, D.S. Patil, Opt. Quant. Electron. 41, 17 (2009)
  • 14. A. Rahm, T. Nobis, M. Lorenz, G. Zimmermann, N. Boukos, A. Travlos, M. Grundmann, Adv. Solid State Phys. 46, 113 (2008)
  • 15. M. Lorenz, E.M. Kaidashev, A. Rahm, T. Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 86, 143113 (2005)
  • 16. C. Czekalla, J. Guinard, C. Hanisch, B.Q. Cao, E.M. Kaidashev, N. Boukos, A. Travlos, J. Renard, B. Gayral, D.L. Dang, M. Lorenz, M. Grundmann, Nanotechnology 19, 115202 (2008)
  • 17. R. Kling, C. Kirchner, T. Gruber, F. Reuss, A. Waag, Nanotechnology 15, 1043 (2004)
  • 18. A.L. Yang, H.Y. Wei, X.L. Liu, H.P. Song, G.L. Zheng, Y. Guo, C.M. Jiao, S.Y. Yang, Q.S. Zhu, Z.G. Wang, J. Cryst. Growth 311, 278 (2009)
  • 19. Y.Z. Zhang, J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, J.Y. Huang, J. Phys. D, Appl. Phys. 40, 3490 (2007)
  • 20. H.C. Hsu, C.Y. Wu, H.M. Cheng, W.F. Hsieh, Appl. Phys. Lett. 89, 013101 (2006)
  • 21. M. Zhi, L.P. Zhu, Z.Z. Ye, F. Wang, B. Zhao, J. Phys. Chem. B 109, 23930 (2005)
  • 22. H. Pan, Y. Zhu, H. Sun, Y. Feng, C. Sow, J. Lin, Nanotechnology 17, 5096 (2006)
  • 23. H.P. Tang, H.P. He, L.P. Zhu, Z.Z. Ye, M. Zhi, F. Yang, B. Zhao, J. Phys. D, Appl. Phys. 39, 3764 (2006)
  • 24. C.J. Pan, H.C. Hsu, H.M. Cheng, C.Y. Wu, W.F. Hsieh, J. Solid State Chem. 180, 1188 (2007)
  • 25. Q. Wei, M.K. Li, Z. Yang, L. Cao, W. Zang, H.W. Liang, Acta Phys. Chim. Sin. 24, 793 (2008)
  • 26. X.C. Wu, J.M. Hong, Z.J. Han, Y.R. Tao, Chem. Phys. Lett. 373, 28 (2003)
  • 27. J.S. Lee, Y.K. Byeun, S.H. Lee, S.C. Choi, J. Alloys Comp. 456, 257 (2008)
  • 28. Y.C. Lin, W.T. Lin, Nanotechnology 16, 1648 (2005)
  • 29. F. Wang, G.Q. Jin, X.Y. Guo, J. Phys. Chem. B 110, 14546 (2006)
  • 30. R. Yousefi, B. Kamaluddin, Appl Surf. Sci. 256, 329 (2009)
  • 31. J. Wang, H.Z. Zhuang, J.L. Li, P. Xu, Acta Phys. Chim. Sin. 26, 2840 (2010)
  • 32. D. Qiu, H. Wu, N. Chen, Chin. Phys. Lett. 20, 582 (2003)
  • 33. M. Yin, Y. Gu, I.L. Kuskovsky, T. Andelman, Y. Zhu, G.F. Neumark, S. O'Brien, J. Am. Chem. Soc. 126, 6206 (2004)
  • 34. Y. Zhang, X. Song, J. Zheng, H. Liu, X. Li, L. You, Nanotechnology 17, 1916 (2006)
  • 35. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996)
  • 36. Y.W. Heo, D.P. Norton, S.J. Pearton, J. Appl. Phys. 98, 073502 (2005)
  • 37. B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001)
  • 38. I. Shalish, H. Temkin, V. Narayanamurti, Phys. Rev. B 69, 245401 (2004)
  • 39. C.Y. Lee, T.Y. Tseng, S.Y. Li, P. Lin, Tamkang J. Sci. Eng. 6, 127 (2003)
  • 40. D. Zhao, C. Andreazza, P. Andreazza, J. Ma, Y. Liu, D. Shen, Chem. Phys. Lett. 399, 522 (2004)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv119n615kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.