Title variants
Languages of publication
Abstracts
Biological properties of synthetic polymers can be improved by surface modification with the use of liquid oxidizers. A resorbable biomedical polymer - poly(glycolide-co-ε-caprolactone) (PGCL) was incubated in 0.1 M NaOH for 2, 6, 16, and 24 h, followed by excessive washing and drying in vacuum. Surface properties of the materials before and after modification were evaluated: wettability by contact angle measurements, topography by atomic force microscopy, and chemical functions by infrared spectroscopy. Applied modification improved wettability of PGCL due to creation of chemical oxygenated functionalities, and resulted in a slight alternation of the surface topography and roughness. In order to determine whether NaOH incubation caused structural changes in bulk of PGCL, positron annihilation lifetime spectroscopy, differential scanning calorimetry and viscosity measurements were performed. It was found that the ortho-positronium lifetime in PGCL declines as a function of modification time. It suggests that NaOH incubation causes structural changes in PGCL not only on the surface but also in bulk.
Discipline
- 78.70.Bj: Positron annihilation(for positron states, see 71.60.+z in electronic structure of bulk materials; for positronium chemistry, see 82.30.Gg in physical chemistry and chemical physics)
- 82.35.Lr: Physical properties of polymers
- 82.35.-x: Polymers: properties; reactions; polymerization(for polymers in electrochemistry, see 82.45.Wx)
- 68.37.Ps: Atomic force microscopy (AFM)
- 83.85.Jn: Viscosity measurements
Journal
Year
Volume
Issue
Pages
1485-1493
Physical description
Dates
published
2008-05
received
2007-09-03
References
- 1. J. Jagur-Grodzinski, Polym. Adv. Technol. 17, 395 (2006)
- 2. R. Langer, J.P. Vacanti, Science 260 920, 93
- (193). E. Pamula, V. De Cupere, Y.F. Dufrene, P.G. Rouxhet, J. Coll. Interf. Sci. 271, 80 (2004)
- 4. H. Tsuji, H. Satoh, S. Kieda, S. Ikemura, Y. Gotom, J. Ishikawa, Nucl. Instrum. Methods Phys. Res. B 148, 1136 (1999)
- 5. Y. Zhu, C. Gao, J. Shen, Biomaterials 23, 4889 (2002)
- 6. R.J. Vance, D.C. Miller, A.Thapa, K.M. Haberstroh, T.J. Webster, Biomaterials 25, 2095 (2004)
- 7. M. Kaczmarczyk, E. Pamua, L. Bacakova, M. Parizek, P. Dobrzyński, Eng. Biomat. 62, 18 (2007)
- 8. G.E. Park, A. Pattison, K. Park, T.J. Webster, Biomaterials 26, 3075 (2005)
- 9. Z.F. Wang, B. Wang, X.M. Ding, M. Zhang, L.M. Liu, N. Qi, J.L. Hu, J. Membr. Sci. 241, 355 (2004)
- 10. M. Misheva, N. Djourelov, E.T. Netkov, Radiat. Phys. Chem. 62, 379 (2001)
- 11. M. Dębowska, Acta Phys. Pol. A 110, 559 (2006)
- 12. E. Pamuła, E. Dryzek, P. Dobrzyński, Acta Phys. Pol. A 110, 631 (2006)
- 13. P. Dobrzyński, S. Li, J. Kasperczyk, M. Bero, F. Gasc, M. Vert, Biomacromolecules 6, 483 (2005)
- 14. J. Kansy, Nucl. Instr. Methods Phys. Res. A 374, 235 (1996)
- 15. S.J. Tao, J. Chem. Phys. 56, 5491 (1972)
- 16. M. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63, 51 (1981)
- 17. Y.C. Jean, Microchem. J. 42, 72 (1990)
- 18. E. Pamuła, M. Błażewicz, C. Paluszkiewicz, P. Dobrzyński, J. Mol. Struct. 596, 69 (2001)
- 20. D. Kiss, K. Sűveg, T. Marek, L. Dévényi, C. Novák, R. Zelkó, AAPS Pharm SciTech. 2006, 7(4), Article 95, DOI: 10.1208/pt070495
- 20. G. Dlubek, J. Stejny, Th. Lűpke, D. Bamford, K. Petters, Ch. Hűbner. M.A. Alam, M. Hill, J. Polym. Sci. B, Polym. Phys. 40, 65 (2001)
- 21. L. Brambilla, G. Consolati, R. Gallo, F. Quasso, F. Severini, Polymer 44, 1041 (2003)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv113n528kz