Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2008 | 113 | 5 | 1485-1493

Article title

Structural Changes in Surface-Modified Polymers for Medical Applications

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Biological properties of synthetic polymers can be improved by surface modification with the use of liquid oxidizers. A resorbable biomedical polymer - poly(glycolide-co-ε-caprolactone) (PGCL) was incubated in 0.1 M NaOH for 2, 6, 16, and 24 h, followed by excessive washing and drying in vacuum. Surface properties of the materials before and after modification were evaluated: wettability by contact angle measurements, topography by atomic force microscopy, and chemical functions by infrared spectroscopy. Applied modification improved wettability of PGCL due to creation of chemical oxygenated functionalities, and resulted in a slight alternation of the surface topography and roughness. In order to determine whether NaOH incubation caused structural changes in bulk of PGCL, positron annihilation lifetime spectroscopy, differential scanning calorimetry and viscosity measurements were performed. It was found that the ortho-positronium lifetime in PGCL declines as a function of modification time. It suggests that NaOH incubation causes structural changes in PGCL not only on the surface but also in bulk.

Keywords

Contributors

author
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, al. Mickiewicza 30, 30-059 Kraków, Poland
author
  • Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Kraków, Poland

References

  • 1. J. Jagur-Grodzinski, Polym. Adv. Technol. 17, 395 (2006)
  • 2. R. Langer, J.P. Vacanti, Science 260 920, 93
  • (193). E. Pamula, V. De Cupere, Y.F. Dufrene, P.G. Rouxhet, J. Coll. Interf. Sci. 271, 80 (2004)
  • 4. H. Tsuji, H. Satoh, S. Kieda, S. Ikemura, Y. Gotom, J. Ishikawa, Nucl. Instrum. Methods Phys. Res. B 148, 1136 (1999)
  • 5. Y. Zhu, C. Gao, J. Shen, Biomaterials 23, 4889 (2002)
  • 6. R.J. Vance, D.C. Miller, A.Thapa, K.M. Haberstroh, T.J. Webster, Biomaterials 25, 2095 (2004)
  • 7. M. Kaczmarczyk, E. Pamua, L. Bacakova, M. Parizek, P. Dobrzyński, Eng. Biomat. 62, 18 (2007)
  • 8. G.E. Park, A. Pattison, K. Park, T.J. Webster, Biomaterials 26, 3075 (2005)
  • 9. Z.F. Wang, B. Wang, X.M. Ding, M. Zhang, L.M. Liu, N. Qi, J.L. Hu, J. Membr. Sci. 241, 355 (2004)
  • 10. M. Misheva, N. Djourelov, E.T. Netkov, Radiat. Phys. Chem. 62, 379 (2001)
  • 11. M. Dębowska, Acta Phys. Pol. A 110, 559 (2006)
  • 12. E. Pamuła, E. Dryzek, P. Dobrzyński, Acta Phys. Pol. A 110, 631 (2006)
  • 13. P. Dobrzyński, S. Li, J. Kasperczyk, M. Bero, F. Gasc, M. Vert, Biomacromolecules 6, 483 (2005)
  • 14. J. Kansy, Nucl. Instr. Methods Phys. Res. A 374, 235 (1996)
  • 15. S.J. Tao, J. Chem. Phys. 56, 5491 (1972)
  • 16. M. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63, 51 (1981)
  • 17. Y.C. Jean, Microchem. J. 42, 72 (1990)
  • 18. E. Pamuła, M. Błażewicz, C. Paluszkiewicz, P. Dobrzyński, J. Mol. Struct. 596, 69 (2001)
  • 20. D. Kiss, K. Sűveg, T. Marek, L. Dévényi, C. Novák, R. Zelkó, AAPS Pharm SciTech. 2006, 7(4), Article 95, DOI: 10.1208/pt070495
  • 20. G. Dlubek, J. Stejny, Th. Lűpke, D. Bamford, K. Petters, Ch. Hűbner. M.A. Alam, M. Hill, J. Polym. Sci. B, Polym. Phys. 40, 65 (2001)
  • 21. L. Brambilla, G. Consolati, R. Gallo, F. Quasso, F. Severini, Polymer 44, 1041 (2003)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv113n528kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.