Preferences help
enabled [disable] Abstract
Number of results
2003 | 50 | 2 | 367-376
Article title

Ca2+differently affects hydrophobic properties of guanylyl cyclase-activating proteins (GCAPs) and recoverin.

Title variants
Languages of publication
Guanylyl cyclase-activating proteins (GCAPs) and recoverin are retina-specific Ca2+-binding proteins involved in phototransduction. We provide here evidence that in spite of structural similarities GCAPs and recoverin differently change their overall hydrophobic properties in response to Ca2+. Using native bovine GCAP1, GCAP2 and recoverin we show that: i) the Ca2+-dependent binding of recoverin to Phenyl-Sepharose is distinct from such interactions of GCAPs; ii) fluorescence intensity of 1-anilinonaphthalene-8-sulfonate (ANS) is markedly higher at high [Ca2+]gfree (10 μM) than at low [Ca2+]free (10 nM) in the presence of recoverin, while an opposing effect is observed in the presence of GCAPs; iii) fluorescence resonance energy transfer from tryptophane residues to ANS is more efficient at high [Ca2+]free in recoverin and at low [Ca2+]free in GCAP2. Such different changes of hydrophobicity evoked by Ca2+ appear to be the precondition for possible mechanisms by which GCAPs and recoverin control the activities of their target enzymes.
Physical description
  • Laboratory of Signaling Proteins, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
  • Laboratory of Signaling Proteins, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
  • Laboratory of Signaling Proteins, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
  • Laboratory of Signaling Proteins, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
  • Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M. (1997) Molecular mechanics of calcium-myristoyl switches. Nature.; 389: 198-202.
  • Ames JB, Dizhoor AM, Ikura M, Palczewski K, Stryer L. (1999) Three-dimensional structure of guanylyl cyclase activating protein-2, a calcium-sensitive modulator of photoreceptor guanylyl cyclases. J Biol Chem.; 274: 19329-37.
  • Braunewell K-H, Gundelfinger ED. (1999) Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell Tissue Res.; 295: 1-12.
  • Burgoyne RD, Weiss JL. (2001) The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J.; 353: 1-12.
  • Cardamone M, Puri NK. (1992) Spectrofluorimetric assessment of the surface hydrophobicity of proteins. Biochem J.; 282: 589-93.
  • Chen C-K, Inglese J, Lefkowitz RJ, Hurley JB. (1995) Ca2+-dependent interaction of recoverin with rhodopsin kinase. J Biol Chem.; 270: 18060-6.
  • Dejda A, Matczak I, Gorczyca WA. (2002) P19 detected in the rat retina and pineal gland is a guanylyl cyclase activating protein (GCAP). Acta Biochim Polon.; 49: 899-905
  • Dizhoor AM, Ray S, Kumar S, Niemi G, Spencer M, Brolley D, Walsh KA, Philipov PP, Hurley JB, Stryer L. (1991) Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science.; 251: 915-8.
  • Dizhoor AM, Lowe DG, Olshevskaya EV, Laura RP, Hurley JB. (1994) The human photoreceptor membrane guanylyl cyclase, RetGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron.; 12: 1345-52.
  • Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, Hurley JB. (1995) Cloning, sequencing, and expression of a 24-kDa Ca2+-binding protein activating photoreceptor guanylyl cyclase. J Biol Chem.; 270: 25200-6.
  • Dizhoor AM, Hurley JB. (1996) Inactivation of EF-hands makes GCAP-2 (p24) a constitutive activator of photoreceptor guanylyl cyclase by preventing a Ca2+-induced activator-to-inhibitor transition. J Biol Chem.; 271: 19346-50.
  • Frins S, Bonigk W, Muller F, Kellner R, Koch KW. (1996) Functional characterization of a guanylyl cyclase-activating protein from vertebrate rods. Cloning, heterologous expression, and localization. J Biol Chem.; 271: 8022-7.
  • Gorczyca WA. (1999) Role of calcium ions in vertebrate phototransduction. Pol J Pharmacol.; 51: 167-72.
  • Gorczyca WA. (2000) Use of nucleoside alpha-phosphorothioates in studies of photoreceptor guanylyl cyclase: purification of guanylyl cyclase activating proteins. Methods Enzymol.; 315: 689-707.
  • Gorczyca WA, Gray-Keller MP, Detwiler PB, Palczewski K. (1994) Purification and physiological evaluation of a guanylate cyclase activating protein from retinal rods. Proc Natl Acad Sci U S A.; 91: 4014-8.
  • Gorczyca WA, Polans AS, Surgucheva IG, Subbaraya I, Baehr W, Palczewski K. (1995) Guanylyl cyclase activating protein. A calcium-sensitive regulator of phototransduction. J Biol Chem.; 270: 22029-36.
  • Gorczyca WA, Sokal I. (2002) GCAPs: Ca2+-sensitive regulators of retGC. Adv Exp Med Biol.; 514: 319-32.
  • Hughes RE, Brzovic PS, Klevit RE, Hurley JB. (1995) Calcium-dependent solvation of the myristoyl group of recoverin. Biochemistry.; 34: 11410-6.
  • Hughes RE, Brzovic PS, Dizhoor AM, Klevit RE, Hurley JB. (1998) Ca2+-dependent conformational changes in bovine GCAP-2. Protein Sci.; 7: 2675-80.
  • Hwang JY, Koch KW. (2002) Calcium- and myristoyl-dependent properties of guanylate cyclase-activating protein-1 and protein-2. Biochemistry.; 41: 13021-8.
  • Johnson WC Jr, Palczewski K, Gorczyca WA, Riazance-Lawrence JH, Witkowska D, Polans AS. (1997) Calcium binding to recoverin: implications for secondary structure and membrane association. Biochim Biophys Acta.; 1342: 164-74.
  • Klenchin VA, Calvert PD, Bownds MD. (1995) Inhibition of rhodopsin kinase by recoverin. Further evidence for a negative feedback system in phototransduction. J Biol Chem.; 270: 16147-52.
  • Ladant D. (1995) Calcium and membrane binding properties of bovine neurocalcin d expressed in Escherichia coli. J Biol Chem.; 270: 3179-85.
  • Lange C, Koch KW. (1997) Calcium-dependent binding of recoverin to membranes monitored by surface plasmon resonance spectroscopy in real time. Biochemistry.; 36: 12019-26.
  • LaPorte DC, Wierman BM, Storm DR. (1980) Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry.; 19: 3814-9.
  • Malnasi-Csizmadia A, Hegyi G, Tolgyesi F, Szent-Gyorgyi AG, Nyitray L. (1999) Fluorescence measurements detect changes in scallop myosin regulatory domain. Eur J Biochem.; 261: 452-8.
  • Olshevskaya EV, Hughes RE, Hurley JB, Dizhoor AM. (1997) Calcium binding, but not a calcium-myristoyl switch, controls the ability of guanylyl cyclase-activating protein GCAP-2 to regulate photoreceptor guanylyl cyclase. J Biol Chem.; 272: 14327-33.
  • Olshevskaya EV, Ermilov AN, Dizhoor AM. (1999) Dimerization of guanylyl cyclase-activating protein and a mechanism of photoreceptor guanylyl cyclase activation. J Biol Chem.; 274: 25583-7.
  • Otto-Bruc A, Buczylko J, Surgucheva I, Subbaraya I, Rudnicka-Nawrot M, Crabb JW, Arendt A, Hargrave PA, Baehr W, Palczewski K. (1997) Functional reconstitution of photoreceptor guanylate cyclase with native and mutant forms of guanylate cyclase-activating protein 1. Biochemistry.; 36: 4295-302.
  • Palczewski K, Subbaraya I, Gorczyca WA, Helekar BS, Ruiz CC, Ohguro H, Huang J, Zhao J, Crabb JW, Johnson RS, Walsh KA, Gray-Keller MP, Detwiler PB, Baehr W. (1994) Molecular cloning and characterization of retinal photoreceptor guanylyl cyclase-activating protein. Neuron.; 13: 395-404.
  • Palczewski K, Polans AS, Baehr W, Ames JB. (2000) Ca2+-binding proteins in the retina: structure, function, and the etiology of human visual diseases. Bioessays.; 22: 337-50.
  • Polans AS, Palczewski K, Gorczyca WA, Crabb JW. (1995) Methods for the purification and characterization of calcium-binding proteins from retina. In Techniques in protein chemistry VI. Crabb JW, ed, pp 285-292. Academic Press, San Diego.
  • Ray S, Zozulya S, Niemi GA, Flaherty KM, Brolley D, Dizhoor AM, McKay DB, Hurley J, Stryer L. (1992) Cloning, expression, and crystallization of recoverin, a calcium sensor in vision. Proc Natl Acad Sci U S A.; 89: 5705-9.
  • Rudnicka-Nawrot M, Surgucheva I, Hulmes JD, Haeseleer F, Sokal I, Crabb JW, Baehr W, Palczewski K. (1998) Changes in biological activity and folding of guanylate cyclase-activating protein 1 as a function of calcium. Biochemistry.; 37: 248-57.
  • Sato N, Kawamura S. (1997) Molecular mechanism of S-modulin action: binding target and effect of ATP. J Biochem.; 122: 1139-45.
  • Schoenmakers TJ, Visser GJ, Flik G, Theuvenet AP. (1992) CHELATOR: an improved method for computing metal ion concentrations in physiological solutions. BioTechniques.; 12: 870-74.
  • Senin II, Zargarov AA, Alekseev AM, Gorodovikova EN, Lipkin VM, Philippov PP. (1995) N-myristoylation of recoverin enhances its efficiency as an inhibitor of rhodopsin kinase. FEBS Lett.; 376: 87-91.
  • Sokal I, Otto-Bruc AE, Surgucheva I, Verlinde CL, Wang CK, Baehr W, Palczewski K. (1999) Conformational changes in guanylyl cyclase-activating protein 1 (GCAP1) and its tryptophan mutants as a function of calcium concentration. J Biol Chem.; 274: 19829-37.
  • Sokal I, Li N, Klug CS, Filipek S, Hubbel WL, Baehr W, Palczewski K. (2001) Calcium-sensitive regions of GCAP1 as observed by chemical modifications, flourescence and EPR spectroscopies. J Biol Chem.; 276: 43361-73.
  • Stryer L. (1965) The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol.; 13: 482-95.
  • Zozulya S, Stryer L. (1992) Calcium-myristoyl protein switch. Proc Natl Acad Sci U S A.; 89: 11569-73.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.