PL EN


Preferences help
enabled [disable] Abstract
Number of results
2010 | 12 | 4 | 31-35
Article title

LiOH.H2O as a catalyst for Knoevenagel and Gewald reactions

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Commercial available lithium hydroxide monohydrate LiOH.H2O was found to be a novel ‘dual activation’ catalyst for tandem cross Knoevenagel condensation between malononitrile or ethylcyanoacetate and aromatic aldehydes leading to an efficient and easy synthesis of the corresponding arylidenes at room temperature in a short reaction time. In the case of salicyaldehyde the reaction lead to the formation of 3-substituted coumarins. The high efficacy, cheapness and easy availability of LiOH.H2O prompted us to investigate its validity as a basic catalyst for Gewald reaction.
Publisher
Year
Volume
12
Issue
4
Pages
31-35
Physical description
Dates
published
1 - 1 - 2010
online
28 - 12 - 2010
References
  • Jones, G. (1967). Organic Reactions. (vol. 15, pp. 204-599). Edited by Adams, R. John Wiley & Sons, New York.
  • Lehnert, W. (1970). Verbesserte variante der knoevenagel-kondensation mit TiCl4/THF/pyridin(I). alkyliden- und arylidenmalonester bei 0-25°C. Tetrahedron Lett. 11 (54), 4723-4724. DOI:10.1016/S0040-4039(00)89377-6.[Crossref]
  • Cabello, J. A., Campelo, J. M., Garcia, A., Luna, D. & Marinas, J. M. (1984). Knoevenagel condensation in the heterogeneous phase using aluminum phosphate-aluminum oxide as a new catalyst. J. Org. Chem. 49 (26), 5195-5197. DOI: 10.1021/jo00200a036.[Crossref]
  • Rao, P. S. & Venkataratnam, R. V. (1991). Zinc chloride as a new catalyst for knoevenagel condensation. Tetrahedron Lett. 32 (41), 5821-5822. DOI:10.1016/S0040-4039(00)93564-0.[Crossref]
  • Rai, U. S., Isloor, A. M., Shetty, P., Vijesh, A. M., Prabhu, N., Isloor, S., Thiageeswaran, M. & Fun, H.-K. (2010). Novel chromeno[2,3-b]pyrimidine derivatives as potential anti-microbial agents. Eur. J. Med. Chem. 45 (6), 2695-2699. DOI:10.1016/j.ejmech.2010.02.040.[Crossref]
  • Sabitha, G., Reddy, B. V. S., Babu, R. S. & Yadav, J. S. (1998). LiCl Catalyzed Knoevenagel condensation: comparative study of conventional method vs microwave irradiation. Chem. Lett. 27 (8), 773-774, from http://www.jstage.jst.go.jp/login?mid=cl&sourceurl=/article/cl/27/8/773/_pdf&lang=en.
  • Li, Y.-Q. (2000). Potassium phosphate as a catalyst for the knoevenagel condensation. J. Chem. Res. Synop. 524-525.
  • Bose, D. S. & Narsaiah, A. V. (2001). An efficient benzyltriethylammonium chloride catalysed preparation of electrophilic alkenes a practical synthesis of trimethoprim. J. Chem. Res. Synop. 36-38.
  • Wang, S., Ren, Z., Cao, W. & Tong, W. (2001). The Knoevenagel condensation of aromatic aldehydes with malononitrile or ethyl cyanoacetate in the presence of ctmab in water. Synth. Commun. 31 (5), 673-677. DOI: 10.1081/SCC-100103255.[Crossref]
  • Morrison, D. W., Forbes, D. C. & Davis Jr, J. H. (2001). Base-promoted reactions in ionic liquid solvents. The Knoevenagel and Robinson annulation reactions. Tetrahedron Lett. 42 (35), 6053-6055. DOI:10.1016/S0040-4039(01)01228-X.[Crossref]
  • Harjani, J. R., Nara, S. J. & Salunkhe, M. M. (2002). Lewis acidic ionic liquids for the synthesis of electrophilic alkenes via the Knoevenagel condensation. Tetrahedron Lett. 43 (6), 1127-1130. DOI:10.1016/S0040-4039(01)02341-3.[Crossref]
  • Bhagat, S., Sharma, R. & Chakraborti, A. K. (2006). Dual-activation protocol for tandem cross-aldol condensation: An easy and highly efficient synthesis of α,α'-bis(aryl/alkylmethylidene)ketones. J. Molecular Catal. A: Chem. 260 (1-2), 235-240. DOI:10.1016/j.molcata.2006.07.018.[Crossref]
  • Zabicky, J. (1961). The kinetics and mechanism of carbonyl-methylene condensation reactions. Part XI. Stereochemistry of the products. J. Chem. Soc. 683-687. DOI: 10.1039/JR9610000683.[Crossref]
  • An-Guo, Y., Luo, L., Guo-Feng, W., Xin-Zhi, C., Wei-Dong, Y., Jian-Hui, C. & Kai-Yuan. (2009). Knoevenagel condensation catalyzed by DBU Brönsted ionic liquid without solvent. Z. Chem. Res. Chin. Univ. 25 (6), 876-881.
  • Al-Hazimi, H. M. A. & Al-Alshaikh, M. A. (2010). Microwave assisted synthesis of substituted furan-2-carboxaldehydes and their reactions. J. Saudi Chem. Soc. Available online. DOI:10.1016/j.jscs.2010.04.009.
  • Evdokimov, N. M., Kireev, A. S., Yakovenko, A. A., Antipin, M. Yu., Magedov, I. V. & Kornienko, A. (2007). One-step synthesis of heterocyclic privileged medicinal Scaffolds by a multicomponent reaction of malononitrile with aldehydes and thiols. J. Org. Chem. 72 (9), 3443-3453. DOI: 10.1021/jo070114u.[WoS][Crossref]
  • Sridhar, M., Rao, R. M., Baba, N. H. K. & Kumbhare, R. M. (2007). Microwave accelerated Gewald reaction: synthesis of 2-aminothiophenes. Tetrahedron Lett. 48(18), 3171-3172. DOI:10.1016/j.tetlet.2007.03.052.
  • Sabnis, R. W., Rangnekar, D. W. & Sonawane, N. D. (1999). 2-Aminothiophenes by the gewald reaction. J. Heterocycl. Chem. 36 (2), 333-345. DOI: 10.1002/jhet.5570360203.[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_v10026-010-0046-6
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.