Preferences help
enabled [disable] Abstract
Number of results
2011 | 6 | 3 | 312-319
Article title

Heart-rate changes in asphyxic preconditioning in rats depend on light-dark cycle

Title variants
Languages of publication
Generally, it is assumed that heart-rhythm disorders during hypoxia result from the interplay between the autonomic nervous system (ANS) and the direct effect of hypoxia on cardiorespiratory structures of the central nervous system and on the myocardium. Circadian variability in the ANS may substantially influence the electrical stability of the myocardium, and thus it is associated with the preconditioning protective mechanism. We designed our study using anaesthetized Wistar rats (ketamine/xylazine 100 mg/15 mg/kg, i.m., open chest experiments) to evaluate the effect of preconditioning (PC) induced by 1 to 3 cycles (1 PC–3 PC) of asphyxia (5 min. of artificial hypoventilation, VT = 0.5 ml/100 g of b.w., 20 breaths/min.) and reoxygenation (5 min. of artificial ventilation, VT = 1 ml/100 g of b.w., 50 breaths/min.) on the heart rate (HR) during followed exposure 20 minutes of hypoventilation after adaptation to a light-dark (LD) cycle of 12 hours:12 hours. Hypoxic HR increases were only minimally prevented by 1 to 2 PC pre-treatment, particularly during the dark part of the day. A statistically significant HR increase required 3 PC and was seen only in the light part of the day. We concluded that possible ANS participation in asphyxic preconditioning depends not only on the number of preconditioned cycles but also on the LD cycle, when the ANS participation in preconditioning can be effective only in the light (nonactive) period.
Physical description
1 - 6 - 2011
8 - 4 - 2011
  • Department of Physiology, Medical Faculty Safarik University, 040 01, Kosice, Slovakia
  • Department of Physiology, Medical Faculty Safarik University, 040 01, Kosice, Slovakia
  • Department of Patophysiology, Medical Faculty, Safarik University, 040 01, Kosice, Slovakia
  • Department of Physiology, Medical Faculty Safarik University, 040 01, Kosice, Slovakia
  • Medical Faculty, Safarik University, 040 01, Kosice, Slovakia
  • Department of Physiology, Medical Faculty Safarik University, 040 01, Kosice, Slovakia
  • [1] Cinca J., Moya A., Figueras J., Roma F., Rius J., Circadian variations in the electrical properties of the human heart assessed by sequential bedside electrophysiologic testing, Am. Heart J., 1986, 112, 315–321[Crossref]
  • [2] Meurling C.J., Waktare J.E.P., Holmqvist F., Hedman A., Camm A.J., Olsson S.B., Malik M., Diurnal variations of the dominant cycle length of chronic atrial fibrillation, Am. J. Physiol., 2001, 280, H401–H406
  • [3] Simantirakis E.N., Chrysostomakis S.I., Marketou M.E., Kochiadakis G.E., Vardakis K.E., Mavrakis H.E., Vardas P., Atrial and ventricular refractoriness in paced patients - circadian variation and its relationship to autonomous nervous system activity, Eur. Heart J., 2001, 22, 2192–2200[Crossref]
  • [4] Watanabe M., Nakagawa M., Nobe S., Ohie T., Takahashi N., Hara M., Yonemochi H., Ito M., Saikawa T., Circadian variation of short-lasting asymptomatic paroxysmal supraventricular tachycardia, J. Electrocardiol., 2002, 35, 135–138[Crossref]
  • [5] Reimer K.A., Hill M.L., Jennings R.B., Prolonged depletion of ATP and the adenosine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs, J. Mol. Cell Cardiol., 1981, 13, 229–239[Crossref]
  • [6] Barber M.J., Effect of time interval between repeated brief coronary artery occlusions on arrhythmias, electrical activity and myocardial blood flow, J. Am. Coll. Cardiol., 1983, 3, 699–705[Crossref]
  • [7] Murry C.E., Jennings R.B., Reimer K.A., Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium, Circulation, 1986, 74, 1124–1136 [Crossref]
  • [8] Wolfrum S., Schneider K., Heidbreder M., Nienstedt J., Dominiak P., Dendorfer A., Remote preconditioning protects the heart by activating myocardial PKC epsilon-isoform, Cardiovasc. Res., 2002, 55, 583–589[Crossref]
  • [9] Pell T.J., Baxter G.F., Yellon D.M., Drew G.M., Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels, Am. J. Physiol. 1998, 275, H1542–H1547
  • [10] Gho B.C., Schoemaker R.G., van den Doel M.A., Duncker D.J., Verdouw P.D. Myocardial protection by brief ischemia in noncardiac tissue, Circulation, 1996, 94, 2193–2200 [Crossref]
  • [11] Liem D.A., Verdouw P.D., Ploeg H., Kazim S., Duncker D.J., Sites of action of adenosine in interorgan preconditioning of the heart, Am. J. Physiol. Heart Circ. Physiol., 2002, 283, H29–H37
  • [12] Schoemaker R.G., Van Heijningen C.L., Bradykinin mediates cardiac preconditioning at a distance, Am. J. Physiol. Heart Circ. Physiol., 2000, 278, H1571–H1576
  • [13] Hu C.P., Peng J., Xiao L., Ye F., Deng H.W., Li Y.J., Effect of age on alpha-calcitonin gene-related peptide-mediated delayed cardioprotection induced by intestinal preconditioning in rats, Regul. Pept., 2002, 107, 137–143[Crossref]
  • [14] Xiao L., Lu R., Hu C.P., Deng H.W., Li Y.J., Delayed cardioprotection by intestinal preconditioning is mediated by calcitonin gene-related peptide, Eur. J. Pharmacol., 2001, 427, 131–135[Crossref]
  • [15] Tang Z.L., Dai W., Li Y.J., Deng H.W., Involvement of capsaicin-sensitive sensory nerves in early and delayed cardioprotection induced by a brief ischaemia of the small intestine, Naunyn. Schmiedebergs Arch. Pharmacol., 1999, 359, 243–247[Crossref]
  • [16] Banerjee A., Locke-Winter C., Rogers K.B., Mitchell M.B., Brew E.C., Cairns C.B., Bensard D.D., Harken A.H., Preconditioning against myocardial dysfunction after ischemia and reperfusion by an alpha 1-adrenergic mechanism, Circ. Res., 1993, 73, 656–670 [Crossref]
  • [17] Cohen M.V., Yang X.M., Liu G.S., Heusch G., Downey J.M., Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels, Circ. Res., 2001, 89, 273–278[Crossref]
  • [18] Miyazaki T., Zipes D.P., Protection against autonomic denervation following acute myocardial infarction by preconditioning ischemia, Circ. Res., 1989, 64, 437–448 [Crossref]
  • [19] Pasceri V., Lanza G.A., Patti G., Pedrotti P., Crea F., Maseri A., Preconditioning by transient myocardial ischemia confers protection against ischemiainduced ventricular arrhythmias in variant angina, Circulation, 1996, 94, 1850–1856 [Crossref]
  • [20] Airaksinen K.E., Ylitalo K.V., Peuhkurinen K.J., Ikaheimo M.J., Huikuri H.V., Heart rate variability during repeated arterial occlusion in coronary angioplasty, Am. J. Cardiol., 1995, 75, 877–881[Crossref]
  • [21] Huikuri H.V., Makikallio T.H., Heart rate variability in ischemic heart disease, Auton. Neurosci., 2001, 90, 95–101[Crossref]
  • [22] Woo M.A., Stevenson W.G., Moser D.K., Middlekauff H.R., Complex heart rate variability and serum norepinephrine levels in patients with advanced heart failure, J. Am. Coll. Cardiol., 1994, 23, 565–569[Crossref]
  • [23] Loukogeorgakis S.P., Panagiotidou A.T., Broadhead M.W., Remote Ischemic Preconditioning Provides Early and Late Protection Against Endothelial Ischemia-Reperfusion Injury in Humans: Role of the Autonomic Nervous System, J. Am. Coll. Cardiol., 2005, 46, 450–456[Crossref]
  • [24] Wu Z.K., Vikman S., Laurikka J., Pehkonen E., Iivainen T., Huikuri H.V., Tarkka M.R., Nonlinear heart rate variability in CABG patients and the preconditioning effect, Eur. J. Cardio-Thor. Surg. 2005, 28, 109–113[Crossref]
  • [25] Shizukuda Y., Iwamoto T., Mallet R.T., Downey H.F., Hypoxic preconditioning attenuates tunning caused by repeated coronary artery occlusions in the dog heart, Cardiovasc. Res., 1993, 27, 559–564[Crossref]
  • [26] Svorc P., Bracokova I., Preconditioning by hypoventilation increases ventricular arrhythmia threshold in Wistar rats, Physiol. Res., 2003, 52, 409–416
  • [27] Prudian F., Gantenbein M., Pelissier A.L., Attolini L., Bruguerolle B., Daily rhythms of the heart rate, temperature and locomotor activity are modified by anaesthetics in rats: A telemetric study, N. S. Arch. Pharmacol., 1997, 355, 774–778[Crossref]
  • [28] Pelissier A.L., Gantenbein M., Bruguerolle B., Caffeine-induced modification of heart rate, temperature, and motor activity circadian rhythms in rat, Physiol. Behav., 1998, 67, 81–88[Crossref]
  • [29] Gantenbein M., Attolini L., Bruguerolle B., Nicorandil affect diurnal rhythms of body temperature, heart rate and locomotor activity in rats, Eur. J. Pharmacol., 1998, 346, 125–130[Crossref]
  • [30] Svorc P., Bracokova I., Bacova I., Svorcova E., Acidbase balance and artificial controlled ventilation in Wistar rats: Chronobiological view. Abstract Book from The Third International Congress of Applied Chronobiology and Chronomedicine, 2009, Akko, Israel, p. 67 (abstract)
  • [31] Jarsky T.M., Stephenson R., Effects of hypoxia and hypercapnia on circadian rhythms in the golden hamster (Mesocricetus auratus), J. Appl. Physiol., 2000, 89, 2130–2138
  • [32] Mortola J.P., Seifert E.L., Hypoxic depression of circadian rhythms in adult rats, J. Appl. Physiol., 2000, 88, 365–368
  • [33] Bishop B., Silva G., Krasney J., Nakano H., Roberts A., Farkas G., Rifkin D., Shucard D., Ambient temperature modulates hypoxic-induced changes in rat body temperature and activity differentially, Am. J. Physiol., 2001, 280, R1190–R1196
  • [34] Bosco G., Ionadi A., Panico S., Faralli F., Gagliardi R., Data P., Mortola J.P., Effects of hypoxia on the circadian patterns in men, High Alt. Med. Biol., 2003, 4, 305–318[Crossref]
  • [35] Kaplan J.L., Gao E., DeGaravilla L., Victain M., Minczak B., Dalsey W.C., Adenosine A1 antagonism attenuates atropine-resistant hypoxic bradycardia in rats, Acad. Emerg. Med., 2003, 10, 923–930[Crossref]
  • [36] Chanine R., Adam A., Yamaguchi N., Gaspo R., Regoli D., Nadeau R., Protective effects of bradykinin on the ischaemic heart: implication of the B1 receptor, Br. J. Pharmacol., 1993, 108, 318–322
  • [37] Ohkuwa T., Itoh H., Yamamoto T., Minami C., Yamazaki Y., Effect of hypoxia on norepinephrine of various tissues in rats, Wilderness. Environ. Med., 2005, 16, 22–26[Crossref]
  • [38] Kawaguchi T., Tsubone H., Hori M., Ozaki H., Kuwahara M., Cardiovascular and autonomic nervous function during acclimatization to hypoxia in conscious rats, Auton. Neurosci., 2005, 117, 94–104[Crossref]
  • [39] Hayashida Y., Hirakawa H., Nakamura T., Maeda M., Chemoreceptors in autonomic responses to hypoxia in conscious rats. In: Zapata et al. (Eds.) Frontiers in Arterial Chemoreception, Plenum Press, New York, pp. 439–442, 1996
  • [40] Hinojosa-Laborde C., Mifflin S.W., Sex differences in blood pressure response to intermittent hypoxia in rats, Hypertension, 2005, 46, 1016–1021[Crossref]
  • [41] Kamasaki Y., Guo A.C., McDonald T.F., Protection by hypoxic preconditioning against hypoxiareoxygenation injury in guinea-pig papillary muscles, Cardiovasc. Res., 1997, 34, 313–322[Crossref]
  • [42] Ravingerova T., Løkebø J.E., Munch-Ellingsen J., Sundset R., Tande P., Ytrehus K., Mechanism of hypoxic preconditioning in guinea pig papillary muscles, Mol. Cell Biochem., 1998, 186, 53–60[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.