Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 6 | 3 | 312-319

Article title

Heart-rate changes in asphyxic preconditioning in rats depend on light-dark cycle

Content

Title variants

Languages of publication

EN

Abstracts

EN
Generally, it is assumed that heart-rhythm disorders during hypoxia result from the interplay between the autonomic nervous system (ANS) and the direct effect of hypoxia on cardiorespiratory structures of the central nervous system and on the myocardium. Circadian variability in the ANS may substantially influence the electrical stability of the myocardium, and thus it is associated with the preconditioning protective mechanism. We designed our study using anaesthetized Wistar rats (ketamine/xylazine 100 mg/15 mg/kg, i.m., open chest experiments) to evaluate the effect of preconditioning (PC) induced by 1 to 3 cycles (1 PC–3 PC) of asphyxia (5 min. of artificial hypoventilation, VT = 0.5 ml/100 g of b.w., 20 breaths/min.) and reoxygenation (5 min. of artificial ventilation, VT = 1 ml/100 g of b.w., 50 breaths/min.) on the heart rate (HR) during followed exposure 20 minutes of hypoventilation after adaptation to a light-dark (LD) cycle of 12 hours:12 hours. Hypoxic HR increases were only minimally prevented by 1 to 2 PC pre-treatment, particularly during the dark part of the day. A statistically significant HR increase required 3 PC and was seen only in the light part of the day. We concluded that possible ANS participation in asphyxic preconditioning depends not only on the number of preconditioned cycles but also on the LD cycle, when the ANS participation in preconditioning can be effective only in the light (nonactive) period.

Publisher

Journal

Year

Volume

6

Issue

3

Pages

312-319

Physical description

Dates

published
1 - 6 - 2011
online
8 - 4 - 2011

Contributors

author
  • Department of Physiology, Medical Faculty Safarik University, 040 01, Kosice, Slovakia
author
  • Department of Physiology, Medical Faculty Safarik University, 040 01, Kosice, Slovakia
author
  • Department of Patophysiology, Medical Faculty, Safarik University, 040 01, Kosice, Slovakia
author
  • Department of Physiology, Medical Faculty Safarik University, 040 01, Kosice, Slovakia
  • Medical Faculty, Safarik University, 040 01, Kosice, Slovakia
  • Department of Physiology, Medical Faculty Safarik University, 040 01, Kosice, Slovakia

References

  • [1] Cinca J., Moya A., Figueras J., Roma F., Rius J., Circadian variations in the electrical properties of the human heart assessed by sequential bedside electrophysiologic testing, Am. Heart J., 1986, 112, 315–321 http://dx.doi.org/10.1016/0002-8703(86)90268-1[Crossref]
  • [2] Meurling C.J., Waktare J.E.P., Holmqvist F., Hedman A., Camm A.J., Olsson S.B., Malik M., Diurnal variations of the dominant cycle length of chronic atrial fibrillation, Am. J. Physiol., 2001, 280, H401–H406
  • [3] Simantirakis E.N., Chrysostomakis S.I., Marketou M.E., Kochiadakis G.E., Vardakis K.E., Mavrakis H.E., Vardas P., Atrial and ventricular refractoriness in paced patients - circadian variation and its relationship to autonomous nervous system activity, Eur. Heart J., 2001, 22, 2192–2200 http://dx.doi.org/10.1053/euhj.2001.2677[Crossref]
  • [4] Watanabe M., Nakagawa M., Nobe S., Ohie T., Takahashi N., Hara M., Yonemochi H., Ito M., Saikawa T., Circadian variation of short-lasting asymptomatic paroxysmal supraventricular tachycardia, J. Electrocardiol., 2002, 35, 135–138 http://dx.doi.org/10.1054/jelc.2002.31820[Crossref]
  • [5] Reimer K.A., Hill M.L., Jennings R.B., Prolonged depletion of ATP and the adenosine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs, J. Mol. Cell Cardiol., 1981, 13, 229–239 http://dx.doi.org/10.1016/0022-2828(81)90219-4[Crossref]
  • [6] Barber M.J., Effect of time interval between repeated brief coronary artery occlusions on arrhythmias, electrical activity and myocardial blood flow, J. Am. Coll. Cardiol., 1983, 3, 699–705 http://dx.doi.org/10.1016/S0735-1097(83)80310-6[Crossref]
  • [7] Murry C.E., Jennings R.B., Reimer K.A., Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium, Circulation, 1986, 74, 1124–1136 [Crossref]
  • [8] Wolfrum S., Schneider K., Heidbreder M., Nienstedt J., Dominiak P., Dendorfer A., Remote preconditioning protects the heart by activating myocardial PKC epsilon-isoform, Cardiovasc. Res., 2002, 55, 583–589 http://dx.doi.org/10.1016/S0008-6363(02)00408-X[Crossref]
  • [9] Pell T.J., Baxter G.F., Yellon D.M., Drew G.M., Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels, Am. J. Physiol. 1998, 275, H1542–H1547
  • [10] Gho B.C., Schoemaker R.G., van den Doel M.A., Duncker D.J., Verdouw P.D. Myocardial protection by brief ischemia in noncardiac tissue, Circulation, 1996, 94, 2193–2200 [Crossref]
  • [11] Liem D.A., Verdouw P.D., Ploeg H., Kazim S., Duncker D.J., Sites of action of adenosine in interorgan preconditioning of the heart, Am. J. Physiol. Heart Circ. Physiol., 2002, 283, H29–H37
  • [12] Schoemaker R.G., Van Heijningen C.L., Bradykinin mediates cardiac preconditioning at a distance, Am. J. Physiol. Heart Circ. Physiol., 2000, 278, H1571–H1576
  • [13] Hu C.P., Peng J., Xiao L., Ye F., Deng H.W., Li Y.J., Effect of age on alpha-calcitonin gene-related peptide-mediated delayed cardioprotection induced by intestinal preconditioning in rats, Regul. Pept., 2002, 107, 137–143 http://dx.doi.org/10.1016/S0167-0115(02)00096-4[Crossref]
  • [14] Xiao L., Lu R., Hu C.P., Deng H.W., Li Y.J., Delayed cardioprotection by intestinal preconditioning is mediated by calcitonin gene-related peptide, Eur. J. Pharmacol., 2001, 427, 131–135 http://dx.doi.org/10.1016/S0014-2999(01)01231-6[Crossref]
  • [15] Tang Z.L., Dai W., Li Y.J., Deng H.W., Involvement of capsaicin-sensitive sensory nerves in early and delayed cardioprotection induced by a brief ischaemia of the small intestine, Naunyn. Schmiedebergs Arch. Pharmacol., 1999, 359, 243–247 http://dx.doi.org/10.1007/PL00005348[Crossref]
  • [16] Banerjee A., Locke-Winter C., Rogers K.B., Mitchell M.B., Brew E.C., Cairns C.B., Bensard D.D., Harken A.H., Preconditioning against myocardial dysfunction after ischemia and reperfusion by an alpha 1-adrenergic mechanism, Circ. Res., 1993, 73, 656–670 [Crossref]
  • [17] Cohen M.V., Yang X.M., Liu G.S., Heusch G., Downey J.M., Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels, Circ. Res., 2001, 89, 273–278 http://dx.doi.org/10.1161/hh1501.094266[Crossref]
  • [18] Miyazaki T., Zipes D.P., Protection against autonomic denervation following acute myocardial infarction by preconditioning ischemia, Circ. Res., 1989, 64, 437–448 [Crossref]
  • [19] Pasceri V., Lanza G.A., Patti G., Pedrotti P., Crea F., Maseri A., Preconditioning by transient myocardial ischemia confers protection against ischemiainduced ventricular arrhythmias in variant angina, Circulation, 1996, 94, 1850–1856 [Crossref]
  • [20] Airaksinen K.E., Ylitalo K.V., Peuhkurinen K.J., Ikaheimo M.J., Huikuri H.V., Heart rate variability during repeated arterial occlusion in coronary angioplasty, Am. J. Cardiol., 1995, 75, 877–881 http://dx.doi.org/10.1016/S0002-9149(99)80679-1[Crossref]
  • [21] Huikuri H.V., Makikallio T.H., Heart rate variability in ischemic heart disease, Auton. Neurosci., 2001, 90, 95–101 http://dx.doi.org/10.1016/S1566-0702(01)00273-9[Crossref]
  • [22] Woo M.A., Stevenson W.G., Moser D.K., Middlekauff H.R., Complex heart rate variability and serum norepinephrine levels in patients with advanced heart failure, J. Am. Coll. Cardiol., 1994, 23, 565–569 http://dx.doi.org/10.1016/0735-1097(94)90737-4[Crossref]
  • [23] Loukogeorgakis S.P., Panagiotidou A.T., Broadhead M.W., Remote Ischemic Preconditioning Provides Early and Late Protection Against Endothelial Ischemia-Reperfusion Injury in Humans: Role of the Autonomic Nervous System, J. Am. Coll. Cardiol., 2005, 46, 450–456 http://dx.doi.org/10.1016/j.jacc.2005.04.044[Crossref]
  • [24] Wu Z.K., Vikman S., Laurikka J., Pehkonen E., Iivainen T., Huikuri H.V., Tarkka M.R., Nonlinear heart rate variability in CABG patients and the preconditioning effect, Eur. J. Cardio-Thor. Surg. 2005, 28, 109–113 http://dx.doi.org/10.1016/j.ejcts.2005.03.011[Crossref]
  • [25] Shizukuda Y., Iwamoto T., Mallet R.T., Downey H.F., Hypoxic preconditioning attenuates tunning caused by repeated coronary artery occlusions in the dog heart, Cardiovasc. Res., 1993, 27, 559–564 http://dx.doi.org/10.1093/cvr/27.4.559[Crossref]
  • [26] Svorc P., Bracokova I., Preconditioning by hypoventilation increases ventricular arrhythmia threshold in Wistar rats, Physiol. Res., 2003, 52, 409–416
  • [27] Prudian F., Gantenbein M., Pelissier A.L., Attolini L., Bruguerolle B., Daily rhythms of the heart rate, temperature and locomotor activity are modified by anaesthetics in rats: A telemetric study, N. S. Arch. Pharmacol., 1997, 355, 774–778 http://dx.doi.org/10.1007/PL00005012[Crossref]
  • [28] Pelissier A.L., Gantenbein M., Bruguerolle B., Caffeine-induced modification of heart rate, temperature, and motor activity circadian rhythms in rat, Physiol. Behav., 1998, 67, 81–88 http://dx.doi.org/10.1016/S0031-9384(99)00038-4[Crossref]
  • [29] Gantenbein M., Attolini L., Bruguerolle B., Nicorandil affect diurnal rhythms of body temperature, heart rate and locomotor activity in rats, Eur. J. Pharmacol., 1998, 346, 125–130 http://dx.doi.org/10.1016/S0014-2999(97)01606-3[Crossref]
  • [30] Svorc P., Bracokova I., Bacova I., Svorcova E., Acidbase balance and artificial controlled ventilation in Wistar rats: Chronobiological view. Abstract Book from The Third International Congress of Applied Chronobiology and Chronomedicine, 2009, Akko, Israel, p. 67 (abstract)
  • [31] Jarsky T.M., Stephenson R., Effects of hypoxia and hypercapnia on circadian rhythms in the golden hamster (Mesocricetus auratus), J. Appl. Physiol., 2000, 89, 2130–2138
  • [32] Mortola J.P., Seifert E.L., Hypoxic depression of circadian rhythms in adult rats, J. Appl. Physiol., 2000, 88, 365–368
  • [33] Bishop B., Silva G., Krasney J., Nakano H., Roberts A., Farkas G., Rifkin D., Shucard D., Ambient temperature modulates hypoxic-induced changes in rat body temperature and activity differentially, Am. J. Physiol., 2001, 280, R1190–R1196
  • [34] Bosco G., Ionadi A., Panico S., Faralli F., Gagliardi R., Data P., Mortola J.P., Effects of hypoxia on the circadian patterns in men, High Alt. Med. Biol., 2003, 4, 305–318 http://dx.doi.org/10.1089/152702903769192269[Crossref]
  • [35] Kaplan J.L., Gao E., DeGaravilla L., Victain M., Minczak B., Dalsey W.C., Adenosine A1 antagonism attenuates atropine-resistant hypoxic bradycardia in rats, Acad. Emerg. Med., 2003, 10, 923–930 http://dx.doi.org/10.1111/j.1553-2712.2003.tb00645.x[Crossref]
  • [36] Chanine R., Adam A., Yamaguchi N., Gaspo R., Regoli D., Nadeau R., Protective effects of bradykinin on the ischaemic heart: implication of the B1 receptor, Br. J. Pharmacol., 1993, 108, 318–322
  • [37] Ohkuwa T., Itoh H., Yamamoto T., Minami C., Yamazaki Y., Effect of hypoxia on norepinephrine of various tissues in rats, Wilderness. Environ. Med., 2005, 16, 22–26 http://dx.doi.org/10.1580/PR42-03.1[Crossref]
  • [38] Kawaguchi T., Tsubone H., Hori M., Ozaki H., Kuwahara M., Cardiovascular and autonomic nervous function during acclimatization to hypoxia in conscious rats, Auton. Neurosci., 2005, 117, 94–104 http://dx.doi.org/10.1016/j.autneu.2004.11.007[Crossref]
  • [39] Hayashida Y., Hirakawa H., Nakamura T., Maeda M., Chemoreceptors in autonomic responses to hypoxia in conscious rats. In: Zapata et al. (Eds.) Frontiers in Arterial Chemoreception, Plenum Press, New York, pp. 439–442, 1996
  • [40] Hinojosa-Laborde C., Mifflin S.W., Sex differences in blood pressure response to intermittent hypoxia in rats, Hypertension, 2005, 46, 1016–1021 http://dx.doi.org/10.1161/01.HYP.0000175477.33816.f3[Crossref]
  • [41] Kamasaki Y., Guo A.C., McDonald T.F., Protection by hypoxic preconditioning against hypoxiareoxygenation injury in guinea-pig papillary muscles, Cardiovasc. Res., 1997, 34, 313–322 http://dx.doi.org/10.1016/S0008-6363(97)00021-7[Crossref]
  • [42] Ravingerova T., Løkebø J.E., Munch-Ellingsen J., Sundset R., Tande P., Ytrehus K., Mechanism of hypoxic preconditioning in guinea pig papillary muscles, Mol. Cell Biochem., 1998, 186, 53–60 http://dx.doi.org/10.1023/A:1006857527652[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11536-011-0021-5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.