Preferences help
enabled [disable] Abstract
Number of results
2009 | 4 | 2 | 141-155
Article title

Antimicrobial resistance in bacteria

Title variants
Languages of publication
The development of antimicrobial resistance by bacteria is inevitable and is considered as a major problem in the treatment of bacterial infections in the hospital and in the community. Despite efforts to develop new therapeutics that interact with new targets, resistance has been reported even to these agents. In this review, an overview is given of the many therapeutic possibilities that exist for treatment of bacterial infections and how bacteria become resistant to these therapeutics.
Physical description
1 - 6 - 2009
27 - 3 - 2009
  • Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
  • Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven, 3000, Leuven, Belgium
  • [1] Cohen M.L., Changing patterns of infectious disease, Nature, 2000, 406, 762–767[Crossref]
  • [2] Yoneyama H., Katsumata R., Antibiotic resistance in bacteria and its future for novel antibiotic development, Biosci. Biotechnol. Biochem., 2006, 70, 1060–1075[Crossref]
  • [3] Wright G.D., Bacterial resistance to antibiotics: enzymatic degradation and modification, Adv. Drug Deliv. Rev., 2005, 57, 1451–1470[Crossref]
  • [4] Rachakonda S., Cartee L., Challenges in antimicrobial drug discovery and the potential of nucleoside antibiotics, Curr. Med. Chem., 2004, 11, 775–793[Crossref]
  • [5] Silver L.L., Novel inhibitors of bacterial cell wall synthesis, Curr. Opin. Microbiol., 2003, 6, 431–438[Crossref]
  • [6] Wise R., A review of the mechanisms of action and resistance of antimicrobial agents, Can. Respir. J., 1999, 6Suppl A, 20A–22A [PubMed]
  • [7] Langton K.P., Henderson P.J., Herbert R.B., Antibiotic resistance: multidrug efflux proteins, a common transport mechanism?, Nat. Prod. Rep., 2005, 22, 439–451[Crossref]
  • [8] Lambert P.A., Bacterial resistance to antibiotics: modified target sites, Adv. Drug Deliv. Rev., 2005, 57, 1471–1485[Crossref]
  • [9] Kahne D., Leimkuhler C., Lu W., Walsh C., Glycopeptide and lipoglycopeptide antibiotics, Chem. Rev., 2005, 105, 425–448[Crossref]
  • [10] Reynolds P.E., Structure, biochemistry and mechanism of action of glycopeptide antibiotics, Eur. J. Clin. Microbiol. Infect. Dis., 1989, 8, 943–950[Crossref]
  • [11] Wilke M.S., Lovering A.L., Strynadka N.C., Betalactam antibiotic resistance: a current structural perspective, Curr. Opin. Microbiol., 2005, 8, 525–533[Crossref]
  • [12] Poole K., Resistance to beta-lactam antibiotics, Cell Mol. Life Sci., 2004, 61, 2200–2223[Crossref]
  • [13] Fisher J.F., Meroueh S.O., Mobashery S., Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity, Chem. Rev., 2005, 105, 395–424[Crossref]
  • [14] Van Bambeke F., Van Laethem Y., Courvalin P., Tulkens P.M., Glycopeptide antibiotics: from conventional molecules to new derivatives, Drugs, 2004, 64, 913–936[Crossref]
  • [15] Williams D.H., The glycopeptide story-how to kill the deadly ’superbugs’, Nat. Prod. Rep., 1996, 13, 469–477[Crossref]
  • [16] Sussmuth R.D., Vancomycin resistance: small molecule approaches targeting the bacterial cell wall biosynthesis, Chembiochem., 2002, 3, 295–298<295::AID-CBIC295>3.0.CO;2-G[Crossref]
  • [17] Schmitz F.J., Higgins P.G., Mayer S., Fluit A.C., Dalhoff A., Activity of quinolones against Grampositive cocci: mechanisms of drug action and bacterial resistance, Eur. J. Clin. Microbiol. Infect. Dis., 2002, 21, 647–659[Crossref]
  • [18] Hooper D.C., Mechanisms of action of antimicrobials: focus on fluoroquinolones, Clin. Infect. Dis., 2001, 32Suppl 1, S9–S15[Crossref]
  • [19] Higgins P.G., Fluit A.C., Schmitz F.J., Fluoroquinolones: structure and target sites, Curr. Drug Targets., 2003, 4, 181–190[Crossref]
  • [20] Dougherty T.J., Beaulieu D., Barrett J.F., New quinolones and the impact on resistance, Drug Discov. Today, 2001, 6, 529–536[Crossref]
  • [21] Woodford N., Biological counterstrike: antibiotic resistance mechanisms of Gram-positive cocci, Clin. Microbiol. Infect., 2005, 11Suppl 3, 2–21[Crossref]
  • [22] Eliopoulos G.M., Quinolone resistance mechanisms in pneumococci, Clin. Infect. Dis., 2004, 38Suppl 4, S350–S356 [Crossref]
  • [23] Vannuffel P., Cocito C., Mechanism of action of streptogramins and macrolides, Drugs, 1996, 51Suppl 1, 20–30[Crossref]
  • [24] Johnston N.J., Mukhtar T.A., Wright G.D., Streptogramin antibiotics: mode of action and resistance, Curr. Drug Targets., 2002, 3, 335–344[Crossref]
  • [25] Shahid M., Aminoglycosidic aminocyclitol antibiotics-A wonder, but toxic drugs: Developments and clinical implications, Anti-infect. Agents Med. Chem., 2007, 6, 107–117 [Crossref]
  • [26] Jana S., Deb J.K., Molecular understanding of aminoglycoside action and resistance, Appl. Microbiol. Biotechnol., 2006, 70, 140–150[Crossref]
  • [27] Kotra L.P., Haddad J., Mobashery S., Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance, Antimicrob. Agents Chemother., 2000, 44, 3249–3256[Crossref]
  • [28] Speer B.S., Shoemaker N.B., Salyers A.A., Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance, Clin. Microbiol. Rev., 1992, 5, 387–399
  • [29] Roberts M.C., Update on acquired tetracycline resistance genes, FEMS Microbiol. Lett., 2005, 245, 195–203[Crossref]
  • [30] Chopra I., Roberts M., Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance, Microbiol. Mol. Biol. Rev., 2001, 65, 232–260[Crossref]
  • [31] Maravic G., Macrolide resistance based on the Ermmediated rRNA methylation, Curr. Drug Targets. Infect. Disord., 2004, 4, 193–202[Crossref]
  • [32] Weisblum B., Erythromycin resistance by ribosome modification, Antimicrob. Agents Chemother., 1995, 39, 577–585 [Crossref][PubMed]
  • [33] Rezanka T., Spizek J., Sigler K., Medicinal use of lincosamides and microbial resistance to them, Anti-infect. Agents Med. Chem., 2007, 6, 133–144 [Crossref]
  • [34] Bozdogan B., Appelbaum P.C., Oxazolidinones: activity, mode of action, and mechanism of resistance, Int. J. Antimicrob. Agents, 2004, 23, 113–119[Crossref]
  • [35] Toh S.M., Xiong L., Arias C.A., Villegas M.V., Lolans K., Quinn J., Mankin A.S., Acquisition of a natural resistance gene renders a clinical strain of methicillin-resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid, Mol. Microbiol., 2007, 64, 1506–1514[Crossref]
  • [36] Enoch D.A., Bygott J.M., Daly M.L., Karas J.A., Daptomycin, J. Infect., 2007, 55, 205–213[Crossref]
  • [37] Johnson A., Daptomycin in the treatment of skin, soft-tissue and invasive infections due to Gram-positive bacteria, Future. Microbiol., 2006, 1, 255–265[Crossref]
  • [38] Lange R.P., Locher H.H., Wyss P.C., Then R.L., The targets of currently used antibacterial agents: lessons for drug discovery, Curr. Pharm. Des, 2007, 13, 3140–3154[WoS][Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.