Preferences help
enabled [disable] Abstract
Number of results
2014 | 12 | 8 | 578-581
Article title

Dual-band tunable negative refractive index metamaterial with F-Shape structure

Title variants
Languages of publication
This paper presents a negative refractive index tunable metamaterial based on F-Shape structure which is capable of achieving dual-band negative permeability and permittivity, thus dual-band negative refractive index. An electromagnetic simulation was performed and effective media parameters were retrieved. Numerical investigations show clear existence of two frequency bands in which permeability and permittivity both are negative. The two negative refractive index bandwidths are from 23.8 GHz to 24.1 GHz and from 28.3 GHz to 34.9 GHz, respectively. The geometry of the structure is simple so it can easily be fabricated. The proposed structure can be used in multiband and broad band devices, as the band range in second negative refractive index region is 7 GHz, for potential applications instead of using complex geometric structures and easily tuned by varying the separation between the horizontal wires.
Physical description
1 - 8 - 2014
20 - 7 - 2014
  • [1] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968)[Crossref]
  • [2] N. Engheta, R.W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations, (Wiley-IEEE Press, Piscataway, NJ, 2006)[Crossref]
  • [3] C. Sabah, S. Uckun, Progress in Electromagnetics Research 91, 349 (2009)[Crossref]
  • [4] D. R. Smith, W. J. Padilla, D. C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)[Crossref]
  • [5] M. Bayindir, K. Aydin, E. Ozbay, P. Markos, C. M. Soukoulis, Appl. Phys. Lett. 81, 120 (2002)[Crossref]
  • [6] P. Gay-Balmaz, O. J. F. Martin, Journal of Applied Physics 92, 2929 (2002)[Crossref]
  • [7] E. Ozbay, K. Aydin, E. Cubukcu, M. Bayindir, IEEE Transactions on Antennas and Propagation 51, 2592 (2003)[Crossref]
  • [8] K. Aydin, K. Guven, M. Kafesaki, C. M. Soukoulis, E. Ozbay, New Journal of Physics 7, 168.1 (2005)[Crossref]
  • [9] Shelby, R. D. Smith, S. Schultz, Science 292, 77 (2001)[Crossref]
  • [10] H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, J. A. Kong, Phys. Rev. E 70, 057605 (2004)[Crossref]
  • [11] H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, J. A. Kong, Appl. Phys. Lett. 86, 151909 (2005)[Crossref]
  • [12] D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, B. I. Wu, Appl. Phys. Lett. 90, 254103 (2007)[Crossref]
  • [13] J. Wang, S. Qu, Z. Xu, J. Zhang, H. Ma, Y. Yang, C. Gu, Photonics and Nanostructures-Fundamentals and Applications 7, 108 (2009)[Crossref]
  • [14] A. Vallecchi, F. Capolino, A. G. Schuchinsky, IEEE Microw. Wirel. Co. 19, 269 (2009)[Crossref]
  • [15] X. J. He, Y. Wang, J. S. Mei, T. L. Gui, J. H. Yin, Chin. Phys. B 21, 044101 (2012)[Crossref]
  • [16] N. Amiri, K. Forooraghi, Z. Atlasbaf, IEEE Antennas Wireless Propag. Lett. 10, 524 (2011)[Crossref]
  • [17] M. Rizwan et al., Eur. Phys. J. Appl. Phys. 63, 10502 (2013)[Crossref]
  • [18] D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002)[Crossref]
  • [19] A. F. Starr, P.M. Rye, D. R. Smith, S. Nemat-Nasser, Phys. Rev. B 70, 115113 (2004)[Crossref]
  • [20] T. Koschny, P. Markos, D. R. Smith, C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003)[Crossref]
  • [21] X. Chen, T. M. Grzegorczyk, B.I. Wu, J. Pacheco, J. A. Kong, Phys. Rev. E 70, 016608 (2004)[Crossref]
  • [22] Z.L. Hou, L.B. Kong, H.B. Jin, M.S. Cao, X. Li, X. Qi, Chin. Phys. Lett. 29, 017701 (2012)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.