Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 8 | 578-581

Article title

Dual-band tunable negative refractive index metamaterial with F-Shape structure

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper presents a negative refractive index tunable metamaterial based on F-Shape structure which is capable of achieving dual-band negative permeability and permittivity, thus dual-band negative refractive index. An electromagnetic simulation was performed and effective media parameters were retrieved. Numerical investigations show clear existence of two frequency bands in which permeability and permittivity both are negative. The two negative refractive index bandwidths are from 23.8 GHz to 24.1 GHz and from 28.3 GHz to 34.9 GHz, respectively. The geometry of the structure is simple so it can easily be fabricated. The proposed structure can be used in multiband and broad band devices, as the band range in second negative refractive index region is 7 GHz, for potential applications instead of using complex geometric structures and easily tuned by varying the separation between the horizontal wires.

Publisher

Journal

Year

Volume

12

Issue

8

Pages

578-581

Physical description

Dates

published
1 - 8 - 2014
online
20 - 7 - 2014

Contributors

  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
author
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
author
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
author
  • School of Science, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
author
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
author
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China
author
  • School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China

References

  • [1] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968) http://dx.doi.org/10.1070/PU1968v010n04ABEH003699[Crossref]
  • [2] N. Engheta, R.W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Explorations, (Wiley-IEEE Press, Piscataway, NJ, 2006) http://dx.doi.org/10.1002/0471784192[Crossref]
  • [3] C. Sabah, S. Uckun, Progress in Electromagnetics Research 91, 349 (2009) http://dx.doi.org/10.2528/PIER09031306[Crossref]
  • [4] D. R. Smith, W. J. Padilla, D. C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000) http://dx.doi.org/10.1103/PhysRevLett.84.4184[Crossref]
  • [5] M. Bayindir, K. Aydin, E. Ozbay, P. Markos, C. M. Soukoulis, Appl. Phys. Lett. 81, 120 (2002) http://dx.doi.org/10.1063/1.1492009[Crossref]
  • [6] P. Gay-Balmaz, O. J. F. Martin, Journal of Applied Physics 92, 2929 (2002) http://dx.doi.org/10.1063/1.1497452[Crossref]
  • [7] E. Ozbay, K. Aydin, E. Cubukcu, M. Bayindir, IEEE Transactions on Antennas and Propagation 51, 2592 (2003) http://dx.doi.org/10.1109/TAP.2003.817570[Crossref]
  • [8] K. Aydin, K. Guven, M. Kafesaki, C. M. Soukoulis, E. Ozbay, New Journal of Physics 7, 168.1 (2005) http://dx.doi.org/10.1088/1367-2630/7/1/168[Crossref]
  • [9] Shelby, R. D. Smith, S. Schultz, Science 292, 77 (2001) http://dx.doi.org/10.1126/science.1058847[Crossref]
  • [10] H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, J. A. Kong, Phys. Rev. E 70, 057605 (2004) http://dx.doi.org/10.1103/PhysRevE.70.057605[Crossref]
  • [11] H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, J. A. Kong, Appl. Phys. Lett. 86, 151909 (2005) http://dx.doi.org/10.1063/1.1897045[Crossref]
  • [12] D. Wang, L. Ran, H. Chen, M. Mu, J. A. Kong, B. I. Wu, Appl. Phys. Lett. 90, 254103 (2007) http://dx.doi.org/10.1063/1.2748085[Crossref]
  • [13] J. Wang, S. Qu, Z. Xu, J. Zhang, H. Ma, Y. Yang, C. Gu, Photonics and Nanostructures-Fundamentals and Applications 7, 108 (2009) http://dx.doi.org/10.1016/j.photonics.2009.01.001[Crossref]
  • [14] A. Vallecchi, F. Capolino, A. G. Schuchinsky, IEEE Microw. Wirel. Co. 19, 269 (2009) http://dx.doi.org/10.1109/LMWC.2009.2017585[Crossref]
  • [15] X. J. He, Y. Wang, J. S. Mei, T. L. Gui, J. H. Yin, Chin. Phys. B 21, 044101 (2012) http://dx.doi.org/10.1088/1674-1056/21/4/044101[Crossref]
  • [16] N. Amiri, K. Forooraghi, Z. Atlasbaf, IEEE Antennas Wireless Propag. Lett. 10, 524 (2011) http://dx.doi.org/10.1109/LAWP.2011.2153821[Crossref]
  • [17] M. Rizwan et al., Eur. Phys. J. Appl. Phys. 63, 10502 (2013) http://dx.doi.org/10.1051/epjap/2013130023[Crossref]
  • [18] D. R. Smith, S. Schultz, P. Markos, C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002) http://dx.doi.org/10.1103/PhysRevB.65.195104[Crossref]
  • [19] A. F. Starr, P.M. Rye, D. R. Smith, S. Nemat-Nasser, Phys. Rev. B 70, 115113 (2004) http://dx.doi.org/10.1103/PhysRevB.70.113102[Crossref]
  • [20] T. Koschny, P. Markos, D. R. Smith, C. M. Soukoulis, Phys. Rev. E 68, 065602 (2003) http://dx.doi.org/10.1103/PhysRevE.68.065602[Crossref]
  • [21] X. Chen, T. M. Grzegorczyk, B.I. Wu, J. Pacheco, J. A. Kong, Phys. Rev. E 70, 016608 (2004) http://dx.doi.org/10.1103/PhysRevE.70.016608[Crossref]
  • [22] Z.L. Hou, L.B. Kong, H.B. Jin, M.S. Cao, X. Li, X. Qi, Chin. Phys. Lett. 29, 017701 (2012) http://dx.doi.org/10.1088/0256-307X/29/1/017701[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-014-0502-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.