PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 10 | 1504-1513
Article title

Reduced-order anti-synchronization of the projections of the fractional order hyperchaotic and chaotic systems

Content
Title variants
Languages of publication
EN
Abstracts
EN
The article aims to study the reduced-order anti-synchronization between projections of fractional order hyperchaotic and chaotic systems using active control method. The technique is successfully applied for the pair of systems viz., fractional order hyperchaotic Lorenz system and fractional order chaotic Genesio-Tesi system. The sufficient conditions for achieving anti-synchronization between these two systems are derived via the Laplace transformation theory. The fractional derivative is described in Caputo sense. Applying the fractional calculus theory and computer simulation technique, it is found that hyperchaos and chaos exists in the fractional order Lorenz system and fractional order Genesio-Tesi system with order less than 4 and 3 respectively. The lowest fractional orders of hyperchaotic Lorenz system and chaotic Genesio-Tesi system are 3.92 and 2.79 respectively. Numerical simulation results which are carried out using Adams-Bashforth-Moulton method, shows that the method is reliable and effective for reduced order anti-synchronization.
Publisher
Journal
Year
Volume
11
Issue
10
Pages
1504-1513
Physical description
Dates
published
1 - 10 - 2013
online
19 - 12 - 2013
References
  • [1] R. Hifer, Applications of Fractional Calculus in Physics (World Scientific, New Jersey, 2001)
  • [2] I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)
  • [3] R.C. Koeller, J. Appl. Mech. 51, 299 (1984) http://dx.doi.org/10.1115/1.3167616[Crossref]
  • [4] H. H. Sun, A. A. Abdelwahed, B. Onaral, IEEE T. Autom. Control 29, 441 (1984) http://dx.doi.org/10.1109/TAC.1984.1103551[Crossref]
  • [5] M. Ichise, Y. Nagayanagi, T. Kojima, J. Electroanal. Chem. 33, 253 (1971) http://dx.doi.org/10.1016/S0022-0728(71)80115-8[Crossref]
  • [6] O. Heaviside, Electromagnetic theory (Chelsea, New York, 1971)
  • [7] N. Laskin, Physica A 287, 482 (2000) http://dx.doi.org/10.1016/S0378-4371(00)00387-3[Crossref]
  • [8] D. Kunsezov, A. Bulagc, G. D. Dang, Phys. Rev. Lett. 82, 1136 (1999) http://dx.doi.org/10.1103/PhysRevLett.82.1136[Crossref]
  • [9] T.T. Hartley, C.F. Lorenzo, Nonlinear Dyn. 29, 201 (2002) http://dx.doi.org/10.1023/A:1016534921583[Crossref]
  • [10] S.G. Samko, A.A. Kilbas, O.I. Maricev, Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach, 1993)
  • [11] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Amsterdam, Elsevier Science, 2006)
  • [12] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos (World Scientific 2012)
  • [13] L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990) http://dx.doi.org/10.1103/PhysRevLett.64.821[Crossref]
  • [14] B. Blasius, A. Huppert, L. Stone, Nature 399, 354 (1999) http://dx.doi.org/10.1038/20676[Crossref]
  • [15] M. Lakshmanan, K. Murali, Chaos in Nonlinear Oscillators: Controlling and Synchronization (World Scientific, Singapore, 1996)
  • [16] S. K. Han, C. Kerrer, Y. Kuramoto, Phys. Rev. Lett. 75, 3190 (1995) http://dx.doi.org/10.1103/PhysRevLett.75.3190[Crossref]
  • [17] K. Murali, M. Lakshmanan, Appld. Math. Mech. 11, 1309 (2003)
  • [18] A. Razminia, D. Baleanu, J. Comput. Nonlin. Dyn. 8, 31012, (2013) http://dx.doi.org/10.1115/1.4023165[Crossref]
  • [19] J. W. Shuai, K. W. Wong, Phys. Rev. E 57, 7002 (1998) http://dx.doi.org/10.1103/PhysRevE.57.7002[Crossref]
  • [20] R. Roy, K. S. Thornburg, Phys. Rev. Lett. 72, 2009 (1994) http://dx.doi.org/10.1103/PhysRevLett.72.2009[Crossref]
  • [21] M. Srivastava, S. K. Agrawal, S. Das, Int. J. Nonlinear Sci. 13, 482 (2012)
  • [22] M. T. Yassen, Chaos Soliton. Fract. 23, 1527 (2005)
  • [23] X. Wu, J. Lü, Chaos Soliton. Fract. 18, 721 (2003) http://dx.doi.org/10.1016/S0960-0779(02)00659-8[Crossref]
  • [24] H. Delavari, D.M. Senejohnny, D. Baleanu, Cent. Eur. J. Phys. 10, 1095 (2012) http://dx.doi.org/10.2478/s11534-012-0073-4[Crossref]
  • [25] S. K. Agrawal, M. Srivastava, S. Das, Chaos Soliton. Fract. 45, 737 (2012) http://dx.doi.org/10.1016/j.chaos.2012.02.004[Crossref]
  • [26] Y. Zhang, J. Sun, Phys. Lett. A 330, 442 (2004) http://dx.doi.org/10.1016/j.physleta.2004.08.023[Crossref]
  • [27] M. G. Rosenblum, A. S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 4193 (1997) http://dx.doi.org/10.1103/PhysRevLett.78.4193[Crossref]
  • [28] G. Si, Z. Sun, Y. Zhang, W. Chen, Nonlinear Anal. Real World Appl. 13, 1761 (2012) http://dx.doi.org/10.1016/j.nonrwa.2011.12.006[Crossref]
  • [29] P. Zhoua, W. Zhu, Nonlinear Anal. Real World Appl. 12, 811 (2011) http://dx.doi.org/10.1016/j.nonrwa.2010.08.008[Crossref]
  • [30] J. P. Yan, C. P. Li, Chaos Soliton. Fract. 32, 725 (2007) http://dx.doi.org/10.1016/j.chaos.2005.11.062[Crossref]
  • [31] G. H. Erjaee, H. Taghvafard, Commun. Nonlinear Sci. Numer. Simulat. 16, 4079 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.02.015[Crossref]
  • [32] X. Y. Wang, J. M. Song, Commun Nonlinear Sci. Numer. Simulat. 14, 3351 (2009) http://dx.doi.org/10.1016/j.cnsns.2009.01.010[Crossref]
  • [33] S. K. Agrawal, M. Srivastava, S. Das, Nonlinear Dyn. 69, 2277 (2012) http://dx.doi.org/10.1007/s11071-012-0426-y[Crossref]
  • [34] R. Femat, G. Perales, Phys. Rev. E 65, 036226 (2002) http://dx.doi.org/10.1103/PhysRevE.65.036226[Crossref]
  • [35] M. Ho, Y. Hung, Z. Liua, I. Jiang, Phys. Lett. A 348, 251 (2006) http://dx.doi.org/10.1016/j.physleta.2005.08.076[Crossref]
  • [36] S. Bowong, Phys. Lett. A 326, 102 (2004) http://dx.doi.org/10.1016/j.physleta.2004.04.004[Crossref]
  • [37] M. M. Al-sawalha, M. S. M. Noorani, Commun. Nonlinear Sci. Numer. Simulat. 15, 3022 (2010) http://dx.doi.org/10.1016/j.cnsns.2009.11.001[Crossref]
  • [38] M. M. Al-sawalha, M. S. M. Noorani, Commun. Nonlinear Sci. Numer. Simulat. 17, 1908 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.07.015[Crossref]
  • [39] S. A. Lazzouni, S. Bowong, F. M. M. Kakmeni, B. Cherki, Commun. Nonlinear Sci. Numer. Simulat. 12, 568 (2007) http://dx.doi.org/10.1016/j.cnsns.2005.04.003[Crossref]
  • [40] X. Wang, M. Wang, Physica A 387, 3751 (2008) http://dx.doi.org/10.1016/j.physa.2008.02.020[Crossref]
  • [41] R. Genesio, A. Tesi, Automatica 28, 531 (1992) http://dx.doi.org/10.1016/0005-1098(92)90177-H[Crossref]
  • [42] M. R. Faieghia, H. Delavari, Commun. Nonlinear Sci. Numer. Simulat. 17, 731 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.05.038[Crossref]
  • [43] H.J. Haubold, A.M. Mathai, R.K. Saxena, Journal of Applied Mathematics 2011, 1, doi:10.1155/2011/298628 [Crossref]
  • [44] K. Diethelm, J. Ford, A. Freed, Numer. Algorithms 36, 31 (2004) http://dx.doi.org/10.1023/B:NUMA.0000027736.85078.be[Crossref]
  • [45] K. Diethelm, J. Ford, Appl. Math. Comput. 154, 621 (2004) http://dx.doi.org/10.1016/S0096-3003(03)00739-2[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0310-5
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.