Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 10 | 1504-1513

Article title

Reduced-order anti-synchronization of the projections of the fractional order hyperchaotic and chaotic systems

Content

Title variants

Languages of publication

EN

Abstracts

EN
The article aims to study the reduced-order anti-synchronization between projections of fractional order hyperchaotic and chaotic systems using active control method. The technique is successfully applied for the pair of systems viz., fractional order hyperchaotic Lorenz system and fractional order chaotic Genesio-Tesi system. The sufficient conditions for achieving anti-synchronization between these two systems are derived via the Laplace transformation theory. The fractional derivative is described in Caputo sense. Applying the fractional calculus theory and computer simulation technique, it is found that hyperchaos and chaos exists in the fractional order Lorenz system and fractional order Genesio-Tesi system with order less than 4 and 3 respectively. The lowest fractional orders of hyperchaotic Lorenz system and chaotic Genesio-Tesi system are 3.92 and 2.79 respectively. Numerical simulation results which are carried out using Adams-Bashforth-Moulton method, shows that the method is reliable and effective for reduced order anti-synchronization.

Publisher

Journal

Year

Volume

11

Issue

10

Pages

1504-1513

Physical description

Dates

published
1 - 10 - 2013
online
19 - 12 - 2013

Contributors

  • Department of Mathematical Sciences, Indian Institute of Technology (BHU), Varanasi, 221005, India
  • Department of Mathematical Sciences, Indian Institute of Technology (BHU), Varanasi, 221005, India
author

References

  • [1] R. Hifer, Applications of Fractional Calculus in Physics (World Scientific, New Jersey, 2001)
  • [2] I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)
  • [3] R.C. Koeller, J. Appl. Mech. 51, 299 (1984) http://dx.doi.org/10.1115/1.3167616[Crossref]
  • [4] H. H. Sun, A. A. Abdelwahed, B. Onaral, IEEE T. Autom. Control 29, 441 (1984) http://dx.doi.org/10.1109/TAC.1984.1103551[Crossref]
  • [5] M. Ichise, Y. Nagayanagi, T. Kojima, J. Electroanal. Chem. 33, 253 (1971) http://dx.doi.org/10.1016/S0022-0728(71)80115-8[Crossref]
  • [6] O. Heaviside, Electromagnetic theory (Chelsea, New York, 1971)
  • [7] N. Laskin, Physica A 287, 482 (2000) http://dx.doi.org/10.1016/S0378-4371(00)00387-3[Crossref]
  • [8] D. Kunsezov, A. Bulagc, G. D. Dang, Phys. Rev. Lett. 82, 1136 (1999) http://dx.doi.org/10.1103/PhysRevLett.82.1136[Crossref]
  • [9] T.T. Hartley, C.F. Lorenzo, Nonlinear Dyn. 29, 201 (2002) http://dx.doi.org/10.1023/A:1016534921583[Crossref]
  • [10] S.G. Samko, A.A. Kilbas, O.I. Maricev, Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach, 1993)
  • [11] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Amsterdam, Elsevier Science, 2006)
  • [12] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos (World Scientific 2012)
  • [13] L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990) http://dx.doi.org/10.1103/PhysRevLett.64.821[Crossref]
  • [14] B. Blasius, A. Huppert, L. Stone, Nature 399, 354 (1999) http://dx.doi.org/10.1038/20676[Crossref]
  • [15] M. Lakshmanan, K. Murali, Chaos in Nonlinear Oscillators: Controlling and Synchronization (World Scientific, Singapore, 1996)
  • [16] S. K. Han, C. Kerrer, Y. Kuramoto, Phys. Rev. Lett. 75, 3190 (1995) http://dx.doi.org/10.1103/PhysRevLett.75.3190[Crossref]
  • [17] K. Murali, M. Lakshmanan, Appld. Math. Mech. 11, 1309 (2003)
  • [18] A. Razminia, D. Baleanu, J. Comput. Nonlin. Dyn. 8, 31012, (2013) http://dx.doi.org/10.1115/1.4023165[Crossref]
  • [19] J. W. Shuai, K. W. Wong, Phys. Rev. E 57, 7002 (1998) http://dx.doi.org/10.1103/PhysRevE.57.7002[Crossref]
  • [20] R. Roy, K. S. Thornburg, Phys. Rev. Lett. 72, 2009 (1994) http://dx.doi.org/10.1103/PhysRevLett.72.2009[Crossref]
  • [21] M. Srivastava, S. K. Agrawal, S. Das, Int. J. Nonlinear Sci. 13, 482 (2012)
  • [22] M. T. Yassen, Chaos Soliton. Fract. 23, 1527 (2005)
  • [23] X. Wu, J. Lü, Chaos Soliton. Fract. 18, 721 (2003) http://dx.doi.org/10.1016/S0960-0779(02)00659-8[Crossref]
  • [24] H. Delavari, D.M. Senejohnny, D. Baleanu, Cent. Eur. J. Phys. 10, 1095 (2012) http://dx.doi.org/10.2478/s11534-012-0073-4[Crossref]
  • [25] S. K. Agrawal, M. Srivastava, S. Das, Chaos Soliton. Fract. 45, 737 (2012) http://dx.doi.org/10.1016/j.chaos.2012.02.004[Crossref]
  • [26] Y. Zhang, J. Sun, Phys. Lett. A 330, 442 (2004) http://dx.doi.org/10.1016/j.physleta.2004.08.023[Crossref]
  • [27] M. G. Rosenblum, A. S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 4193 (1997) http://dx.doi.org/10.1103/PhysRevLett.78.4193[Crossref]
  • [28] G. Si, Z. Sun, Y. Zhang, W. Chen, Nonlinear Anal. Real World Appl. 13, 1761 (2012) http://dx.doi.org/10.1016/j.nonrwa.2011.12.006[Crossref]
  • [29] P. Zhoua, W. Zhu, Nonlinear Anal. Real World Appl. 12, 811 (2011) http://dx.doi.org/10.1016/j.nonrwa.2010.08.008[Crossref]
  • [30] J. P. Yan, C. P. Li, Chaos Soliton. Fract. 32, 725 (2007) http://dx.doi.org/10.1016/j.chaos.2005.11.062[Crossref]
  • [31] G. H. Erjaee, H. Taghvafard, Commun. Nonlinear Sci. Numer. Simulat. 16, 4079 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.02.015[Crossref]
  • [32] X. Y. Wang, J. M. Song, Commun Nonlinear Sci. Numer. Simulat. 14, 3351 (2009) http://dx.doi.org/10.1016/j.cnsns.2009.01.010[Crossref]
  • [33] S. K. Agrawal, M. Srivastava, S. Das, Nonlinear Dyn. 69, 2277 (2012) http://dx.doi.org/10.1007/s11071-012-0426-y[Crossref]
  • [34] R. Femat, G. Perales, Phys. Rev. E 65, 036226 (2002) http://dx.doi.org/10.1103/PhysRevE.65.036226[Crossref]
  • [35] M. Ho, Y. Hung, Z. Liua, I. Jiang, Phys. Lett. A 348, 251 (2006) http://dx.doi.org/10.1016/j.physleta.2005.08.076[Crossref]
  • [36] S. Bowong, Phys. Lett. A 326, 102 (2004) http://dx.doi.org/10.1016/j.physleta.2004.04.004[Crossref]
  • [37] M. M. Al-sawalha, M. S. M. Noorani, Commun. Nonlinear Sci. Numer. Simulat. 15, 3022 (2010) http://dx.doi.org/10.1016/j.cnsns.2009.11.001[Crossref]
  • [38] M. M. Al-sawalha, M. S. M. Noorani, Commun. Nonlinear Sci. Numer. Simulat. 17, 1908 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.07.015[Crossref]
  • [39] S. A. Lazzouni, S. Bowong, F. M. M. Kakmeni, B. Cherki, Commun. Nonlinear Sci. Numer. Simulat. 12, 568 (2007) http://dx.doi.org/10.1016/j.cnsns.2005.04.003[Crossref]
  • [40] X. Wang, M. Wang, Physica A 387, 3751 (2008) http://dx.doi.org/10.1016/j.physa.2008.02.020[Crossref]
  • [41] R. Genesio, A. Tesi, Automatica 28, 531 (1992) http://dx.doi.org/10.1016/0005-1098(92)90177-H[Crossref]
  • [42] M. R. Faieghia, H. Delavari, Commun. Nonlinear Sci. Numer. Simulat. 17, 731 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.05.038[Crossref]
  • [43] H.J. Haubold, A.M. Mathai, R.K. Saxena, Journal of Applied Mathematics 2011, 1, doi:10.1155/2011/298628 [Crossref]
  • [44] K. Diethelm, J. Ford, A. Freed, Numer. Algorithms 36, 31 (2004) http://dx.doi.org/10.1023/B:NUMA.0000027736.85078.be[Crossref]
  • [45] K. Diethelm, J. Ford, Appl. Math. Comput. 154, 621 (2004) http://dx.doi.org/10.1016/S0096-3003(03)00739-2[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0310-5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.