PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 8 | 977-983
Article title

A class of exactly solvable models for the Schrödinger equation

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We present a class of confining potentials which allow one to reduce the one-dimensional Schrödinger equation to a named equation of mathematical physics, namely either Bessel’s or Whittaker’s differential equation. In all cases, we provide closed form expressions for both the symmetric and antisymmetric wavefunction solutions, each along with an associated transcendental equation for allowed eigenvalues. The class of potentials considered contains an example of both cusp-like single wells and a double-well.
Publisher
Journal
Year
Volume
11
Issue
8
Pages
977-983
Physical description
Dates
published
1 - 8 - 2013
online
23 - 10 - 2013
References
  • [1] E. Schrödinger, Ann. Phys. (Leipzig) 79, 361 (1926) http://dx.doi.org/10.1002/andp.19263840404[Crossref]
  • [2] P. M. Morse, Phys. Rev. 34, 57 (1929) http://dx.doi.org/10.1103/PhysRev.34.57[Crossref]
  • [3] C. Eckart, Phys. Rev. 35, 1303 (1930) http://dx.doi.org/10.1103/PhysRev.35.1303[Crossref]
  • [4] N. Rosen, P. M. Morse, Phys. Rev. 42, 210 (1932) http://dx.doi.org/10.1103/PhysRev.42.210[Crossref]
  • [5] G. Pöschl, E. Teller, Z. Phys. 83, 143 (1933) http://dx.doi.org/10.1007/BF01331132[Crossref]
  • [6] A list of exact solutions from the genesis of quantum mechanics is given in M. F. Manning, Phys. Rev. 48, 161 (1935) http://dx.doi.org/10.1103/PhysRev.48.161[Crossref]
  • [7] F. Scarf, Phys. Rev. 112, 1137 (1958) http://dx.doi.org/10.1103/PhysRev.112.1137[Crossref]
  • [8] R. Loudon, Am. J. Phys. 27, 649 (1959) http://dx.doi.org/10.1119/1.1934950[Crossref]
  • [9] R. R. Whitehead, A. Watt, G. P. Flessas, M. A. Nagarajan, J. Phys. A: Math. Gen. 15, 1217 (1982) http://dx.doi.org/10.1088/0305-4470/15/4/024[Crossref]
  • [10] D. Pertsch J. Phys. A: Math. Gen. 23, 4145 (1990) http://dx.doi.org/10.1088/0305-4470/23/18/020[Crossref]
  • [11] C. M. Bender, Q. Wang, J. Phys. A: Math. Gen. 34 9835 (2001) http://dx.doi.org/10.1088/0305-4470/34/46/307[Crossref]
  • [12] D. G. W. Parfitt, M. E. Portnoi, J. Math. Phys. 43, 4681 (2002) http://dx.doi.org/10.1063/1.1503868[Crossref]
  • [13] For a comprehensive list of exact solutions please see V. G. Bagrov, D. M. Gitman, Exact Solutions of Relativistic Wave Equations (Kluwer, Dordrecht, 1990) http://dx.doi.org/10.1007/978-94-009-1854-2[Crossref]
  • [14] L. Infeld, T. E. Hull, Rev. Mod. Phys. 23, 21 (1951) http://dx.doi.org/10.1103/RevModPhys.23.21[Crossref]
  • [15] F. Cooper, A. Khare, U. P. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001) http://dx.doi.org/10.1142/4687[Crossref]
  • [16] A. Gangopadhyaya, J. V. Mallow and C. Rasinariu, Supersymmetric Quantum Mechanics (World Scientific, Singapore, 2011), and references therein
  • [17] A. V. Turbiner, Sov. Phys. JETP 67, 230 (1988)
  • [18] A. Turbiner, Commun. Math. Phys. 118, 467 (1988) http://dx.doi.org/10.1007/BF01466727[Crossref]
  • [19] A. G. Ushveridze, Quasi-exactly Solvable Models in Quantum Mechanics (Institute of Physics, Bristol, 1994)
  • [20] C. M. Bender, S. Boettcher, J. Phys. A 31, L273 (1998) http://dx.doi.org/10.1088/0305-4470/31/14/001[Crossref]
  • [21] C. A. Downing, J. Math. Phys. 54, 072101 (2013) http://dx.doi.org/10.1063/1.4811855[Crossref]
  • [22] R. R. Hartmann, arXiv:1306.2836 (2013) [WoS]
  • [23] M. J. Gillan, J. Phys. C: Solid State Phys. 20 3621 (1987) http://dx.doi.org/10.1088/0022-3719/20/24/005[Crossref]
  • [24] Z. I. Alferov, Rev. Mod. Phys. 73, 767 (2001) http://dx.doi.org/10.1103/RevModPhys.73.767[Crossref]
  • [25] P. Budau, M. Grigorescu, Phys. Rev. B 57, 6313 (1998) http://dx.doi.org/10.1103/PhysRevB.57.6313[Crossref]
  • [26] R. W. Spekkens, J. E. Sipe, Phys. Rev. A 59, 3868 (1999) http://dx.doi.org/10.1103/PhysRevA.59.3868[Crossref]
  • [27] S. Coleman, Aspects of Symmetry (Cambridge University Press, Cambridge, 1985) http://dx.doi.org/10.1017/CBO9780511565045[Crossref]
  • [28] K. Heun Math. Ann. 33, 161 (1889) http://dx.doi.org/10.1007/BF01443849[Crossref]
  • [29] A. Ronveaux, Heun’s Differential Equations (Oxford University Press, Oxford, 1995)
  • [30] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)
  • [31] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 1980)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0301-6
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.