Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 8 | 977-983

Article title

A class of exactly solvable models for the Schrödinger equation

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We present a class of confining potentials which allow one to reduce the one-dimensional Schrödinger equation to a named equation of mathematical physics, namely either Bessel’s or Whittaker’s differential equation. In all cases, we provide closed form expressions for both the symmetric and antisymmetric wavefunction solutions, each along with an associated transcendental equation for allowed eigenvalues. The class of potentials considered contains an example of both cusp-like single wells and a double-well.

Publisher

Journal

Year

Volume

11

Issue

8

Pages

977-983

Physical description

Dates

published
1 - 8 - 2013
online
23 - 10 - 2013

Contributors

  • School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK

References

  • [1] E. Schrödinger, Ann. Phys. (Leipzig) 79, 361 (1926) http://dx.doi.org/10.1002/andp.19263840404[Crossref]
  • [2] P. M. Morse, Phys. Rev. 34, 57 (1929) http://dx.doi.org/10.1103/PhysRev.34.57[Crossref]
  • [3] C. Eckart, Phys. Rev. 35, 1303 (1930) http://dx.doi.org/10.1103/PhysRev.35.1303[Crossref]
  • [4] N. Rosen, P. M. Morse, Phys. Rev. 42, 210 (1932) http://dx.doi.org/10.1103/PhysRev.42.210[Crossref]
  • [5] G. Pöschl, E. Teller, Z. Phys. 83, 143 (1933) http://dx.doi.org/10.1007/BF01331132[Crossref]
  • [6] A list of exact solutions from the genesis of quantum mechanics is given in M. F. Manning, Phys. Rev. 48, 161 (1935) http://dx.doi.org/10.1103/PhysRev.48.161[Crossref]
  • [7] F. Scarf, Phys. Rev. 112, 1137 (1958) http://dx.doi.org/10.1103/PhysRev.112.1137[Crossref]
  • [8] R. Loudon, Am. J. Phys. 27, 649 (1959) http://dx.doi.org/10.1119/1.1934950[Crossref]
  • [9] R. R. Whitehead, A. Watt, G. P. Flessas, M. A. Nagarajan, J. Phys. A: Math. Gen. 15, 1217 (1982) http://dx.doi.org/10.1088/0305-4470/15/4/024[Crossref]
  • [10] D. Pertsch J. Phys. A: Math. Gen. 23, 4145 (1990) http://dx.doi.org/10.1088/0305-4470/23/18/020[Crossref]
  • [11] C. M. Bender, Q. Wang, J. Phys. A: Math. Gen. 34 9835 (2001) http://dx.doi.org/10.1088/0305-4470/34/46/307[Crossref]
  • [12] D. G. W. Parfitt, M. E. Portnoi, J. Math. Phys. 43, 4681 (2002) http://dx.doi.org/10.1063/1.1503868[Crossref]
  • [13] For a comprehensive list of exact solutions please see V. G. Bagrov, D. M. Gitman, Exact Solutions of Relativistic Wave Equations (Kluwer, Dordrecht, 1990) http://dx.doi.org/10.1007/978-94-009-1854-2[Crossref]
  • [14] L. Infeld, T. E. Hull, Rev. Mod. Phys. 23, 21 (1951) http://dx.doi.org/10.1103/RevModPhys.23.21[Crossref]
  • [15] F. Cooper, A. Khare, U. P. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001) http://dx.doi.org/10.1142/4687[Crossref]
  • [16] A. Gangopadhyaya, J. V. Mallow and C. Rasinariu, Supersymmetric Quantum Mechanics (World Scientific, Singapore, 2011), and references therein
  • [17] A. V. Turbiner, Sov. Phys. JETP 67, 230 (1988)
  • [18] A. Turbiner, Commun. Math. Phys. 118, 467 (1988) http://dx.doi.org/10.1007/BF01466727[Crossref]
  • [19] A. G. Ushveridze, Quasi-exactly Solvable Models in Quantum Mechanics (Institute of Physics, Bristol, 1994)
  • [20] C. M. Bender, S. Boettcher, J. Phys. A 31, L273 (1998) http://dx.doi.org/10.1088/0305-4470/31/14/001[Crossref]
  • [21] C. A. Downing, J. Math. Phys. 54, 072101 (2013) http://dx.doi.org/10.1063/1.4811855[Crossref]
  • [22] R. R. Hartmann, arXiv:1306.2836 (2013) [WoS]
  • [23] M. J. Gillan, J. Phys. C: Solid State Phys. 20 3621 (1987) http://dx.doi.org/10.1088/0022-3719/20/24/005[Crossref]
  • [24] Z. I. Alferov, Rev. Mod. Phys. 73, 767 (2001) http://dx.doi.org/10.1103/RevModPhys.73.767[Crossref]
  • [25] P. Budau, M. Grigorescu, Phys. Rev. B 57, 6313 (1998) http://dx.doi.org/10.1103/PhysRevB.57.6313[Crossref]
  • [26] R. W. Spekkens, J. E. Sipe, Phys. Rev. A 59, 3868 (1999) http://dx.doi.org/10.1103/PhysRevA.59.3868[Crossref]
  • [27] S. Coleman, Aspects of Symmetry (Cambridge University Press, Cambridge, 1985) http://dx.doi.org/10.1017/CBO9780511565045[Crossref]
  • [28] K. Heun Math. Ann. 33, 161 (1889) http://dx.doi.org/10.1007/BF01443849[Crossref]
  • [29] A. Ronveaux, Heun’s Differential Equations (Oxford University Press, Oxford, 1995)
  • [30] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)
  • [31] I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series and Products (Academic, New York, 1980)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0301-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.