Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 6 | 806-812

Article title

Consensus of compound-order multi-agent systems with communication delays

Content

Title variants

Languages of publication

EN

Abstracts

EN
In complex environments, many distributed networked systems can only be illustrated with fractional-order dynamics. When multi-agent systems show individual diversity with difference agents, heterogeneous (integer-order and fractional-order) dynamics are used to illustrate the agent systems and compose integerfractional compounded-order systems. Applying Laplace transform and frequency domain theory of the fractional-order operator, the consensus of delayed multi-agent systems with directed weighted topologies is studied. Since an integer-order model is the special case of a fractional-order model, the results in this paper can be extended to systems with integer-order models. Finally, numerical examples are used to verify our results.

Publisher

Journal

Year

Volume

11

Issue

6

Pages

806-812

Physical description

Dates

published
1 - 6 - 2013
online
9 - 10 - 2013

Contributors

author
  • National Key Laboratory on Aircraft Control Technology, Beihang University, Beijing, 100191, P.R. China
author
  • School of Mathematics, Zhengzhou University, Zhengzhou, 450001, China
author
  • School of Automation, Nanjing University of Posts and Telecommunications, Nanjing, 210046, China
author
  • School of Information and Electrical Engineering, Ludong University, Yantai, 264025, P. R. China

References

  • [1] I. Podlubny, Fractional Differential Equations (Academie Press, New York, 1999)
  • [2] R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, New Jersey, 2001)
  • [3] D. Baleanu, K. Diethelm, E. Scalas, J. Trujillo, Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos (World Scientific, New Jersey, 2012)
  • [4] A. Razminia, D. Baleanu, V. Majd, J. Optimiz. Theory App. 156, 45 (2013) http://dx.doi.org/10.1007/s10957-012-0211-6[Crossref]
  • [5] A. Razminia, D. Baleanu, J. Comput. Nonlinear Dynam. 8, 31012 (2013) http://dx.doi.org/10.1115/1.4023165[Crossref]
  • [6] S. Ladaci, J. J. Loiseau, A. Charef, Commun. Nonlin. Sci. Num. 13, 707 (2008) http://dx.doi.org/10.1016/j.cnsns.2006.06.009[Crossref]
  • [7] C. Hwanga, Y. C. Cheng, Automatica 42, 825 (2006) http://dx.doi.org/10.1016/j.automatica.2006.01.008[Crossref]
  • [8] H. S. Ahn, Y. Q. Chen, Automatica 44, 2985 (2008) http://dx.doi.org/10.1016/j.automatica.2008.07.003[Crossref]
  • [9] Y. Li, Y. Q. Chen, I. Podlubny, Comput. Math. Appl. 24, 1429 (2009)
  • [10] J. Sabatier, M. Moze, C. Farges, Comput. Math. Appl. 59, 1594 (2010) http://dx.doi.org/10.1016/j.camwa.2009.08.003[Crossref]
  • [11] J. G. Lu, Y.Q. Chen, IEEE T. Automat. Contr. 55, 152 (2010) http://dx.doi.org/10.1109/TAC.2009.2033738[Crossref]
  • [12] C. W. Reynolds, Comput. Graph. 21, 25 (1987) http://dx.doi.org/10.1145/37402.37406[Crossref]
  • [13] T. Vicsek, A. Cziroo’k, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995) http://dx.doi.org/10.1103/PhysRevLett.75.1226[Crossref]
  • [14] R. Olfati-Saber, R. M. Murray, IEEE T. Automat. Contr. 49, 1520 (2004) http://dx.doi.org/10.1109/TAC.2004.834113[Crossref]
  • [15] W. Ren, R. W. Beard, E. M. Atkins, IEEE Contr. Syst. Mag. 27, 71 (2007) http://dx.doi.org/10.1109/MCS.2007.338264[Crossref]
  • [16] S.-H. Li, H. Du, X. Lin, Automatica 47, 1706 (2011) http://dx.doi.org/10.1016/j.automatica.2011.02.045[Crossref]
  • [17] P. Lin, Y. M. Jia, Automatica 45, 2154 (2009) http://dx.doi.org/10.1016/j.automatica.2009.05.002[Crossref]
  • [18] J. Yu, L. Wang, Syst. Control Lett. 59, 340 (2010) http://dx.doi.org/10.1016/j.sysconle.2010.03.009[Crossref]
  • [19] H.-Y. Yang, Z. Zhang, S. Zhang, Int. J. Robust Nonlin. 21, 945 (2011) http://dx.doi.org/10.1002/rnc.1631[Crossref]
  • [20] Y.-P. Tian, C.-L. Liu, IEEE T. Automat. Contr. 53, 2122 (2008) http://dx.doi.org/10.1109/TAC.2008.930184[Crossref]
  • [21] W. Ren, Y. Cao, Distributed coordination of multiagent networks (Springer-Verlag, London, 2011) http://dx.doi.org/10.1007/978-0-85729-169-1[Crossref]
  • [22] Y. Cao, Y. Li, W. Ren, Y. Chen, IEEE T. Syst. Man Cy. B 40, 362 (2010) http://dx.doi.org/10.1109/TSMCB.2009.2024647[Crossref]
  • [23] Y. Cao, W. Ren, Syst. Control Lett. 43, 233 (2010) http://dx.doi.org/10.1016/j.sysconle.2010.01.008[Crossref]
  • [24] C. A. Desoer, Y. T. Wang, IEEE T. Automat. Contr. 25, 187 (1980) http://dx.doi.org/10.1109/TAC.1980.1102280[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0231-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.