PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 9 | 1 | 123-130
Article title

Accuracy of Cotton-Mouton polarimetry in sheared toroidal plasma of circular cross-section

Content
Title variants
Languages of publication
EN
Abstracts
EN
The Cotton-Mouton effect in sheared plasma with helical magnetic lines is studied on the basis of the equation for complex amplitude ratio (CAR). A simple model for helical magnetic lines in sheared plasma of toroidal configuration is suggested. The equation for CAR in the sheared plasma is solved by perturbation method, using the small shear angle deviations as is characteristic for tokamak plasma. It is shown that the inaccuracy in polarization measurements caused by deviations of the sheared angle amounts to some percentage of the shearless Cotton-Mouton phase shift. One suggested method is to subtract the “sheared” term, which may improve the accuracy of the Cotton-Mouton measurements in the sheared plasma.
Publisher

Journal
Year
Volume
9
Issue
1
Pages
123-130
Physical description
Dates
published
1 - 2 - 2011
online
24 - 9 - 2010
Contributors
author
References
  • [1] M. Born, E. Wolf, Principles of Optics, 7th edition (Cambridge University Press, Cambridge, 1999)
  • [2] W.P. Allis, S.J. Buchsbaum, A. Bers, Waves in Anisotropic Plasma (MIT Press, Cambridge, 1963)
  • [3] V.I. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Gordon & Breach, New York, 1970)
  • [4] J.M. Donne et al., Rev. Sci. Instrum. 70, 726 (1999) http://dx.doi.org/10.1063/1.1149396[Crossref]
  • [5] T.C. Hender et al., Nucl. Fusion 39, 2251 (1999) http://dx.doi.org/10.1088/0029-5515/39/12/303[Crossref]
  • [6] T.C. Hender et al., Nucl. Fusion 47, 128 (2007) http://dx.doi.org/10.1088/0029-5515/47/6/S03[Crossref]
  • [7] S.E. Segre, Plasma Phys. Contr. F. 41, R57 (1999) http://dx.doi.org/10.1088/0741-3335/41/2/001[Crossref]
  • [8] S.E. Segre, Phys. Plasmas 2, 2908 (1995) http://dx.doi.org/10.1063/1.871190[Crossref]
  • [9] S.E. Segre, J. Opt. Soc. Am. A 18, 2601 (2001) http://dx.doi.org/10.1364/JOSAA.18.002601[Crossref]
  • [10] S. Huard, Polarization of Light (John Willey & Sons, Masson, 1997)
  • [11] Yu.A. Kravtsov, B. Bieg, J. Plasma Phys. (in press)
  • [12] Yu.A. Kravtsov, Soviet Physics - Doklady 13, 1125 (1969)
  • [13] Yu.A. Kravtsov, O.N. Naida, A.A. Fuki, Phys.-Usp.+ 39, 129 (1996) http://dx.doi.org/10.1070/PU1996v039n02ABEH000131[Crossref]
  • [14] A.A. Fuki, Yu.A. Kravtsov, O.N. Naida, Geometrical Optics of Weakly Anisotropic Media (Gordon & Breach, London, New York, 1997)
  • [15] Yu.A. Kravtsov, Yu.I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer, Berlin, 1990) http://dx.doi.org/10.1007/978-3-642-84031-9[Crossref]
  • [16] Yu.A. Kravtsov, Geometrical Optics in Engineering Physics (Alpha Sci. Int., London, 2005)
  • [17] Yu.A. Kravtsov, B. Bieg, Plasma Phys. Contr. F. 51, 02200 (2010)
  • [18] M.M. Popov, Bulletin of the Leningrad University 22, 44 (1969) (in Russian)
  • [19] V.M. Babich, V.S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods (Springer Verlag, Berlin, 1990)
  • [20] V. Červený, Seismic Ray Theory (Cambridge University Press, Cambridge, 2001) http://dx.doi.org/10.1017/CBO9780511529399[Crossref]
  • [21] P. Berczynski, K.Yu. Bliokh, Yu.A. Kravtsov, A. Stateczny, J. Opt. Soc. Am. A 23, 1442 (2006) http://dx.doi.org/10.1364/JOSAA.23.001442[Crossref]
  • [22] Yu.A. Kravtsov, P. Berczynski, Stud. Geophys. Geod. 51, 1 (2007) http://dx.doi.org/10.1007/s11200-007-0002-y[Crossref]
  • [23] Yu.A. Kravtsov, B. Bieg, K.Yu. Bliokh, J. Opt. Soc. Am. A 24, 3388 (2007) http://dx.doi.org/10.1364/JOSAA.24.003388[Crossref]
  • [24] Z.H. Czyz, B. Bieg, Yu.A. Kravtsov, Phys. Lett. A 368, 101 (2007) http://dx.doi.org/10.1016/j.physleta.2007.03.055[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-010-0049-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.