Preferences help
enabled [disable] Abstract
Number of results
2010 | 8 | 1 | 65-76
Article title

Acoustically driven charge separation in semiconductor heterostructures sensed by optical spectroscopy techniques

Title variants
Languages of publication
We demonstrate a method of using a two-layer sandwich structure, which includes a LiNbO3 plate and a semiconductor heterostructure to create an inhomogeneous stress and piezoelectric harmonic potential in the semiconductor. Both the GaAs/AlGaAs quantum well (QW) structures and SiGe/Si heterostructures are attempted, working with and without using a piezoelectric field in the semiconductor layer. The standing-wave fields generated in the semiconductor and the electron and hole distributions driven by the piezoelectric field are computed by finite element method (FEM) techniques. It is experimentally shown that, in a GaAs/AlxGa1-x
As asymmetric double quantum well structure, the resonance enhancement of the narrower QW photoluminescence band is observed, which may be explained by the resonant charge transfer between the wider and narrower QWs. It is also shown that the piezoelectric fields quench the pure LO-phonon lines in the Raman spectra, whereas the coupled LO-phonon-plasmon mode strengthens. Experimental results indicate that the charge separation occurs in the plane of the QWs due to the piezoelectric fields. The recombination of carriers in the SiGe/Si heterostructures can be effectively enhanced by the presence of ultrasonic stress, displaying features consistent with varying electrical activity at dislocations.
Physical description
1 - 2 - 2010
15 - 11 - 2009
  • Faculty of Physics, Taras Shevchenko Kyiv National University, 01601, Kyiv, Ukraine
  • Faculty of Physics, Taras Shevchenko Kyiv National University, 01601, Kyiv, Ukraine
  • Faculty of Physics, Taras Shevchenko Kyiv National University, 01601, Kyiv, Ukraine
  • [1] C. H. Hamann, W. Vielstich, Electrochemistry (Wiley-VCH, Weinheim, 1998)
  • [2] S. M. Sze, Physics of Semiconductor Devices, 2nd edition (Wiley, New York, 1981)
  • [3] P. Boucaud, S. Sauvage, C. R. Phys. 4, 1133 (2003)[Crossref]
  • [4] R. B. Balili, D. W. Snoke, L. Pfeiffer, K. West, Appl. Phys. Lett. 88, 031110 (2006)[Crossref]
  • [5] C. Rocke et al., Phys. Rev. Lett. 78, 4099 (1997)[Crossref]
  • [6] O. A. Korotchenkov, A. Cantarero, Phys. Rev. B. 75, 085320 (2007)[Crossref]
  • [7] T. Makkonen, A. Holappa, J. Ella, M. M. Salomaa, IEEE T. Ultrason. Ferr. 48, 1241 (2001)[Crossref]
  • [8] N. F. Shulga, A. M. Bolkisev, Vibration of piezoelectric bodies (Naukova dumka, Kyiv, 1990) (in Ukrainian)
  • [9] S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Vienna, 1984)
  • [10] H.-C. Kaiser, J. Rehberg, Nonlinear Anal.-Theor. 41, 33 (2000)[Crossref]
  • [11] E. Kapon, Semiconductor Lasers. Fundamentals (Academic Press, San Diego, 1999)
  • [12] N. G. Einspruch, W. R. Frensley (Eds.), Heterostructures and Quantum Devices (Academic Press, San Diego, 1994)
  • [13] R. Rapaport et al., Phys. Rev. Lett. 92, 117405 (2004)[Crossref]
  • [14] A. García-Cristóbal, A. Cantarero, F. Alsina, P. V. Santos, Phys. Rev. B. 69, 205301 (2004)[Crossref]
  • [15] O. C. Zienkiewich, The Finite Element Method in Engineering Science (McGraw-Hill, London, 1971)
  • [16] O. A. Korotchenkov, O. I. Polovina, V. V. Kurylyuk, IEEE T. Ultrason. Ferr. 54, 2529 (2007)[Crossref]
  • [17] B. A. Auld, Acoustic Fields and Waves in Solids, Vol. 1 (Wiley, New York, 1973)
  • [18] S. Adachi, J. Appl. Phys. 58, R1 (1985)[Crossref]
  • [19] I.-H. Tan, G. L. Snider, L. D. Chang, E. L. Hu, J. Appl. Phys. 68, 4071 (1990)[Crossref]
  • [20] D. A. Berlincourt, D. R. Curran, H. Jaffe, In: W. P. Mason (Ed.), Physical Acoustic, Vol. 1, part. A (Academic Press, New York, 1964)
  • [21] X.-H. Du, Q.-M. Wang, K. Uchino, IEEE T. Ultrason. Ferr. 50, 312 (2003)[Crossref]
  • [22] D. A. B. Miller et al., Phys. Rev. B 32, 1043 (1985)[Crossref]
  • [23] N. Peyghambarian, S. W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, Englewood Cliffs, 1993)
  • [24] C. Gmachl et al., Rep. Prog. Phys. 64, 533 (2001)[Crossref]
  • [25] S. Tarucha, K. Ploog, Phys. Rev. B 39, 5353 (1989)[Crossref]
  • [26] T. Ohtsuka et al., J. Appl. Phys. 94, 2192 (2003)[Crossref]
  • [27] A. Ya. Shik, L. G. Bakueva, S. F. Musikhin, Physics of Low-Dimensional Systems (Nauka, St. Petersburg, 2001) (in Russian)
  • [28] A. B. Nadtochii, O. A. Korotchenkov, H. G. Grimmeiss, Phys. Rev. B 67 125301 (2003)
  • [29] T. Yuasa et al., Phys. Rev. B. 33, 1222 (1986)[Crossref]
  • [30] B. Fluegel, A. Mascarenhas, D. W. Snoke, L. N. Pfeiffer, K. West, Nat. Photonics. 1, 701 (2007)[Crossref]
  • [31] A. S. Barker Jr., A. J. Sievers, Rev. Mod. Phys. 47, S1 (1975)[Crossref]
  • [32] O. K. Kim, W. G. Spitzer, J. Appl. Phys. 50, 4362 (1979)[Crossref]
  • [33] T. Yuasa et al., Appl. Phys. Lett. 46, 176 (1985)[Crossref]
  • [34] P. Y. Yu, M. Cardona, Fundamentals of Semiconductors, Physics and Material Properties (Springer, Berlin, 1999)
  • [35] P. Giudici, A. R. Goñi, C. Thomsen, K. Eberl, M. Hauser, Phys. Rev. B 73, 045315 (2006)[Crossref]
  • [36] E. M. Conwell, Solid State Physics (Academic, New York, 1967)
  • [37] I. V. Ostrovskii, O. A. Korotchenkov, T. Goto, H. G. Grimmeiss, Phys. Rep. 311, 1 (1999)[Crossref]
  • [38] P. M. Mooney, J. O. Chu, Annu. Rev. Mater. Sci. 30, 335 (2000)[Crossref]
  • [39] J. R. Chelikowsky, Phys. Rev. Lett. 49, 1569 (1982)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.