Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Hydrodynamic cavitation is analysed by a global thermodynamics principle following an approach based on the maximum irreversible entropy variation that has already given promising results for open systems and has been successfully applied in specific engineering problems. In this paper we present a new phenomenological method to evaluate the conditions inducing cavitation. We think this method could be useful in the design of turbo-machineries and related technologies: it represents both an original physical approach to cavitation and an economical saving in planning because the theoretical analysis could allow engineers to reduce the experimental tests and the costs of the design process.
Discipline
- 47.35.-i: Hydrodynamic waves(see also 47.65.-d Magnetohydrodynamics and electrohydrodynamics; 52.35.Bj Magnetohydrodynamic waves; 52.35.Dm Sound waves in Physics of plasmas and electric discharges)
- 05.70.-a: Thermodynamics(see also section 64 Equations of state, phase equilibria, and phase transitions, and section 65 Thermal properties of condensed matter; for chemical thermodynamics, see 82.60.-s; for thermodynamics of plasmas, see 52.25.Kn; for thermodynamic properties of quantum fluids, see 67.25.bd, and 67.30.ef; for thermodynamics of nanoparticles, see 82.60.Qr, and 65.80.-g; for thermodynamic processes in astrophysics, see 95.30.Tg; for thermodynamics in volcanology, see 91.40.Pc)
Publisher
Journal
Year
Volume
Issue
Pages
638-644
Physical description
Dates
published
1 - 9 - 2009
online
25 - 6 - 2009
Contributors
author
- I.T.I.S. ‘A. Volta’, Spalto Marengo 42, 15100, Alessandria, Italy
author
- Dipartimento di Fisica Sperimentale, University of Torino, Via P. Giuria 1, 10125, Torino, Italy
References
- [1] F. G. Hammit, Cavitation and Multiphase flow Phenomena (Mc-Graw Hill, New York, 1980)
- [2] F. R. Young, Cavitation (McGraw-Hill Book Company, New York, 1989)
- [3] B. Niemczewski, Ultrasonics 18, 107 (1980) http://dx.doi.org/10.1016/0041-624X(80)90021-9[Crossref]
- [4] E. Harumi, J. Acoust. Soc. Am. 95, 1 (1994) http://dx.doi.org/10.1121/1.410026[Crossref]
- [5] L. D. Landau, E. M. Lifshitz, Statistical Physics, 3rd edition (Pergamon Press, Oxford, 1980)
- [6] U. Lucia, PhD Thesis, University of Florence, (Florence, Italy, 1995) (in Italian)
- [7] U. Lucia, Il Nuovo Cimento B 110, 1227 (1995) http://dx.doi.org/10.1007/BF02724612[Crossref]
- [8] G. Grazzini, U. Lucia, Rev. Gen. Therm. 36, 605 (1997) http://dx.doi.org/10.1016/S0035-3159(97)89987-4[Crossref]
- [9] U. Lucia, Physica A 376, 289 (2007) http://dx.doi.org/10.1016/j.physa.2006.10.059[Crossref]
- [10] U. Lucia, Physica A 387, 3454 (2008) http://dx.doi.org/10.1016/j.physa.2008.02.002[Crossref]
- [11] V. H. Arakeri, In: U. S. Rohagi (Ed.), Spring Meeting of the Fluids Engineering Division, Toronto Canada, June 4–7, 1990, (Amer. Society of Mechanical, ASME, New York, 1990) 60
- [12] E. S. Geskin, In: J. Flowers (Ed.) Energy for the 21th Century: Conversion, Utilisation and Environmental Quality, Florence Italy, July 6–8, 1994, (Circus Publisher, Roma, 1994) 923
- [13] K. Olah, In: E. Sciubba, M. J. Moran (Eds.) Second Law Analysis of Energy Systems: Towards the 21-st Century, Roma Italy, July 5–7, 1995, (Circus Publisher, Roma, 1995) 165
- [14] A. Bejan, Entropy Generation through Heat and Fluid Flow (John Wiley & Sons, New York, 1982)
- [15] W. S. Lamb, Cavitation and Aeration in Hydraulic System (BHR Group. Bedfordshire UK, 1987) 114
- [16] S. E. Haaland, J. Fluid. Eng.-T. ASME 105, 89 (1983) http://dx.doi.org/10.1115/1.3240948[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-009-0092-y