Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2009 | 7 | 3 | 638-644

Article title

Hydrodynamic cavitation: from theory towards a new experimental approach

Content

Title variants

Languages of publication

EN

Abstracts

EN
Hydrodynamic cavitation is analysed by a global thermodynamics principle following an approach based on the maximum irreversible entropy variation that has already given promising results for open systems and has been successfully applied in specific engineering problems. In this paper we present a new phenomenological method to evaluate the conditions inducing cavitation. We think this method could be useful in the design of turbo-machineries and related technologies: it represents both an original physical approach to cavitation and an economical saving in planning because the theoretical analysis could allow engineers to reduce the experimental tests and the costs of the design process.

Contributors

author
  • I.T.I.S. ‘A. Volta’, Spalto Marengo 42, 15100, Alessandria, Italy
  • Dipartimento di Fisica Sperimentale, University of Torino, Via P. Giuria 1, 10125, Torino, Italy

References

  • [1] F. G. Hammit, Cavitation and Multiphase flow Phenomena (Mc-Graw Hill, New York, 1980)
  • [2] F. R. Young, Cavitation (McGraw-Hill Book Company, New York, 1989)
  • [3] B. Niemczewski, Ultrasonics 18, 107 (1980) http://dx.doi.org/10.1016/0041-624X(80)90021-9[Crossref]
  • [4] E. Harumi, J. Acoust. Soc. Am. 95, 1 (1994) http://dx.doi.org/10.1121/1.410026[Crossref]
  • [5] L. D. Landau, E. M. Lifshitz, Statistical Physics, 3rd edition (Pergamon Press, Oxford, 1980)
  • [6] U. Lucia, PhD Thesis, University of Florence, (Florence, Italy, 1995) (in Italian)
  • [7] U. Lucia, Il Nuovo Cimento B 110, 1227 (1995) http://dx.doi.org/10.1007/BF02724612[Crossref]
  • [8] G. Grazzini, U. Lucia, Rev. Gen. Therm. 36, 605 (1997) http://dx.doi.org/10.1016/S0035-3159(97)89987-4[Crossref]
  • [9] U. Lucia, Physica A 376, 289 (2007) http://dx.doi.org/10.1016/j.physa.2006.10.059[Crossref]
  • [10] U. Lucia, Physica A 387, 3454 (2008) http://dx.doi.org/10.1016/j.physa.2008.02.002[Crossref]
  • [11] V. H. Arakeri, In: U. S. Rohagi (Ed.), Spring Meeting of the Fluids Engineering Division, Toronto Canada, June 4–7, 1990, (Amer. Society of Mechanical, ASME, New York, 1990) 60
  • [12] E. S. Geskin, In: J. Flowers (Ed.) Energy for the 21th Century: Conversion, Utilisation and Environmental Quality, Florence Italy, July 6–8, 1994, (Circus Publisher, Roma, 1994) 923
  • [13] K. Olah, In: E. Sciubba, M. J. Moran (Eds.) Second Law Analysis of Energy Systems: Towards the 21-st Century, Roma Italy, July 5–7, 1995, (Circus Publisher, Roma, 1995) 165
  • [14] A. Bejan, Entropy Generation through Heat and Fluid Flow (John Wiley & Sons, New York, 1982)
  • [15] W. S. Lamb, Cavitation and Aeration in Hydraulic System (BHR Group. Bedfordshire UK, 1987) 114
  • [16] S. E. Haaland, J. Fluid. Eng.-T. ASME 105, 89 (1983) http://dx.doi.org/10.1115/1.3240948[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0092-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.