PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2010 | 8 | 1 | 33-41
Article title

Spatially extended populations reproducing logistic map

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We discuss here the conditions that the spatially extended systems (SES) must satisfy to reproduce the logistic map. To address this dilemma we define a 2-D coupled map lattice with a local rule mimicking the logistic formula. We show that for growth rates of k⩽k
∞ (k
∞ is the accumulation point) the global evolution of the system exactly reproduces the cascade of period doubling bifurcations. However, for k > k
∞, instead of chaotic modes, the cascade of period halving bifurcations is observed. Consequently, the microscopic states at the lattice nodes resynchronize producing dynamically changing spatial patterns. By downscaling the system and assuming intense mobility of individuals over the lattice, the spatial correlations can be destroyed and the local rule remains the only factor deciding the evolution of the whole colony. We found the class of “atomistic” rules for which uncorrelated spatially extended population matches the logistic map both for pre-chaotic and chaotic modes. We concluded that the global logistic behavior can be expected for a spatially extended colony with high mobility of individuals whose microscopic behavior is governed by a specific semi-logistic rule in the closest neighborhood. Conversely, the populations forming dynamically changing spatial clusters behave in a different way than the logistic model and reproduce at least the steady-state fragment of the logistic map.
Publisher

Journal
Year
Volume
8
Issue
1
Pages
33-41
Physical description
Dates
published
1 - 2 - 2010
online
15 - 11 - 2009
Contributors
  • Institute of Comuter Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland, dzwinel@agh.edu.pl
References
  • [1] K. Kaneko, I. Tsuda, Complex Systems: Chaos and beyond (Springer Verlag, Berlin, 2001) 273
  • [2] B. E. Kendall, Theor. Popul. Biol. 54, 11 (1998) http://dx.doi.org/10.1006/tpbi.1998.1365[Crossref]
  • [3] A. L. Lloyd, J. Theor. Biol. 173, 217 (1995) http://dx.doi.org/10.1006/jtbi.1995.0058[Crossref]
  • [4] R. Law, D. J. Murrell, U. Dieckmann, Ecology 84, 252 (2003) http://dx.doi.org/10.1890/0012-9658(2003)084[0252:PGISAT]2.0.CO;2[Crossref]
  • [5] A. Bejan, Shape and Structure, from Engineering to Nature (Cambridge University Press, 2000) 324
  • [6] E. Ben-Jacob, I. Cohen, H. Levine, Adv. Phys. 49, 395 (2000) http://dx.doi.org/10.1080/000187300405228[Crossref]
  • [7] I. Cohen, I. Golding, Y. Kozlovsky, E. Ben-Jacob, Fractals 7, 235 (1999) http://dx.doi.org/10.1142/S0218348X99000244[Crossref]
  • [8] E. E. Holmes, M. A. Lewis, J. E. Banks, R. R. Veit, Ecology 75, 17 (1994) http://dx.doi.org/10.2307/1939378[Crossref]
  • [9] B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems (Cambridge University Press, Cambridge, 1998) 341
  • [10] S. A. Wolfram, New Kind of Science (Wolfram Media Incorporated, 2002) 1263
  • [11] Yang Xin-She, Y. Young, In: S. Olariu, A. Y. Zomaya (Eds.), Handbook of Bioinspired Algorithms and Applications (Chapman & Hall/CRC, Boca Raton, London, New York, 2006) 273
  • [12] W. Dzwinel, D.A. Yuen, Int. J. Mod. Phys. C 16, 357 (2005) http://dx.doi.org/10.1142/S0129183105007182[Crossref]
  • [13] K. Krawczyk, W. Dzwinel, D.A. Yuen, Int. J. Mod. Phys. C 14, 1385 (2003) http://dx.doi.org/10.1142/S0129183103006199[Crossref]
  • [14] V. Grimm, S. F. Railsback, Individual-Based Modelling and Ecology (Princeton University Press: Princeton, NJ, 2005) 480
  • [15] D. J. Murrell, U. Dieckmann, R. Law, J. Theor. Biol. 229, 421 (2004) http://dx.doi.org/10.1016/j.jtbi.2004.04.013[Crossref]
  • [16] S. P. Ellner, J. Theor. Biol. 210, 435 (2001) http://dx.doi.org/10.1006/jtbi.2001.2322[Crossref]
  • [17] A. G. Schuster, Deterministic chaos, Polish edition (Wydawnictwo Naukowe PWN, Warszawa, 1993) 274
  • [18] P. J. S. Franks, Limnol. Oceanogr. 42, 2997 (1997)
  • [19] P. Topa. W. Dzwinel, D. A. Yuen, Int. J. Mod. Phys. C 17, 1437, (2006) http://dx.doi.org/10.1142/S0129183106009898[Crossref]
  • [20] H. R. Thompson, Ecology 37, 391 (1956) http://dx.doi.org/10.2307/1933159[Crossref]
  • [21] K. Kaneko, Physica D 34, 1 (1989) http://dx.doi.org/10.1016/0167-2789(89)90227-3[Crossref]
  • [22] G. Pizarro, D. Griffeath, D. R. Noguera, Journal of Environmental Engineering 127, 782 (2001) http://dx.doi.org/10.1061/(ASCE)0733-9372(2001)127:9(782)[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-009-0089-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.