Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 8 | 1 | 33-41

Article title

Spatially extended populations reproducing logistic map

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We discuss here the conditions that the spatially extended systems (SES) must satisfy to reproduce the logistic map. To address this dilemma we define a 2-D coupled map lattice with a local rule mimicking the logistic formula. We show that for growth rates of k⩽k
∞ (k
∞ is the accumulation point) the global evolution of the system exactly reproduces the cascade of period doubling bifurcations. However, for k > k
∞, instead of chaotic modes, the cascade of period halving bifurcations is observed. Consequently, the microscopic states at the lattice nodes resynchronize producing dynamically changing spatial patterns. By downscaling the system and assuming intense mobility of individuals over the lattice, the spatial correlations can be destroyed and the local rule remains the only factor deciding the evolution of the whole colony. We found the class of “atomistic” rules for which uncorrelated spatially extended population matches the logistic map both for pre-chaotic and chaotic modes. We concluded that the global logistic behavior can be expected for a spatially extended colony with high mobility of individuals whose microscopic behavior is governed by a specific semi-logistic rule in the closest neighborhood. Conversely, the populations forming dynamically changing spatial clusters behave in a different way than the logistic model and reproduce at least the steady-state fragment of the logistic map.

Publisher

Journal

Year

Volume

8

Issue

1

Pages

33-41

Physical description

Dates

published
1 - 2 - 2010
online
15 - 11 - 2009

Contributors

  • Institute of Comuter Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Krakow, Poland

References

  • [1] K. Kaneko, I. Tsuda, Complex Systems: Chaos and beyond (Springer Verlag, Berlin, 2001) 273
  • [2] B. E. Kendall, Theor. Popul. Biol. 54, 11 (1998) http://dx.doi.org/10.1006/tpbi.1998.1365[Crossref]
  • [3] A. L. Lloyd, J. Theor. Biol. 173, 217 (1995) http://dx.doi.org/10.1006/jtbi.1995.0058[Crossref]
  • [4] R. Law, D. J. Murrell, U. Dieckmann, Ecology 84, 252 (2003) http://dx.doi.org/10.1890/0012-9658(2003)084[0252:PGISAT]2.0.CO;2[Crossref]
  • [5] A. Bejan, Shape and Structure, from Engineering to Nature (Cambridge University Press, 2000) 324
  • [6] E. Ben-Jacob, I. Cohen, H. Levine, Adv. Phys. 49, 395 (2000) http://dx.doi.org/10.1080/000187300405228[Crossref]
  • [7] I. Cohen, I. Golding, Y. Kozlovsky, E. Ben-Jacob, Fractals 7, 235 (1999) http://dx.doi.org/10.1142/S0218348X99000244[Crossref]
  • [8] E. E. Holmes, M. A. Lewis, J. E. Banks, R. R. Veit, Ecology 75, 17 (1994) http://dx.doi.org/10.2307/1939378[Crossref]
  • [9] B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems (Cambridge University Press, Cambridge, 1998) 341
  • [10] S. A. Wolfram, New Kind of Science (Wolfram Media Incorporated, 2002) 1263
  • [11] Yang Xin-She, Y. Young, In: S. Olariu, A. Y. Zomaya (Eds.), Handbook of Bioinspired Algorithms and Applications (Chapman & Hall/CRC, Boca Raton, London, New York, 2006) 273
  • [12] W. Dzwinel, D.A. Yuen, Int. J. Mod. Phys. C 16, 357 (2005) http://dx.doi.org/10.1142/S0129183105007182[Crossref]
  • [13] K. Krawczyk, W. Dzwinel, D.A. Yuen, Int. J. Mod. Phys. C 14, 1385 (2003) http://dx.doi.org/10.1142/S0129183103006199[Crossref]
  • [14] V. Grimm, S. F. Railsback, Individual-Based Modelling and Ecology (Princeton University Press: Princeton, NJ, 2005) 480
  • [15] D. J. Murrell, U. Dieckmann, R. Law, J. Theor. Biol. 229, 421 (2004) http://dx.doi.org/10.1016/j.jtbi.2004.04.013[Crossref]
  • [16] S. P. Ellner, J. Theor. Biol. 210, 435 (2001) http://dx.doi.org/10.1006/jtbi.2001.2322[Crossref]
  • [17] A. G. Schuster, Deterministic chaos, Polish edition (Wydawnictwo Naukowe PWN, Warszawa, 1993) 274
  • [18] P. J. S. Franks, Limnol. Oceanogr. 42, 2997 (1997)
  • [19] P. Topa. W. Dzwinel, D. A. Yuen, Int. J. Mod. Phys. C 17, 1437, (2006) http://dx.doi.org/10.1142/S0129183106009898[Crossref]
  • [20] H. R. Thompson, Ecology 37, 391 (1956) http://dx.doi.org/10.2307/1933159[Crossref]
  • [21] K. Kaneko, Physica D 34, 1 (1989) http://dx.doi.org/10.1016/0167-2789(89)90227-3[Crossref]
  • [22] G. Pizarro, D. Griffeath, D. R. Noguera, Journal of Environmental Engineering 127, 782 (2001) http://dx.doi.org/10.1061/(ASCE)0733-9372(2001)127:9(782)[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-009-0089-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.